Portal:Physics
Get Portal:Physics essential facts below. View Videos or join the Portal:Physics discussion. Add Portal:Physics to your PopFlock.com topic list for future reference or share this resource on social media.
Portal:Physics

The Physics Portal

Stylised atom with three Bohr model orbits and stylised nucleus.svg
Various examples of physical phenomena

Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, and its main goal is to understand how the universe behaves.

Physics is one of the oldest academic disciplines and, through its inclusion of astronomy, perhaps the oldest. Over much of the past two millennia, physics, chemistry, biology, and certain branches of mathematics were a part of natural philosophy, but during the Scientific Revolution in the 17th century these natural sciences emerged as unique research endeavors in their own right. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms studied by other sciences and suggest new avenues of research in academic disciplines such as mathematics and philosophy.

Advances in physics often enable advances in new technologies. For example, advances in the understanding of electromagnetism, solid-state physics, and nuclear physics led directly to the development of new products that have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus. (Full article...)

Cscr-featured.png Featured article - show another

This is a Featured article, which represents some of the best content on English Wikipedia.

Percival Lowell, originator of the Planet X hypothesis

Following the discovery of the planet Neptune in 1846, there was considerable speculation that another planet might exist beyond its orbit. The search began in the mid-19th century and continued at the start of the 20th with Percival Lowell's quest for Planet X. Lowell proposed the Planet X hypothesis to explain apparent discrepancies in the orbits of the giant planets, particularly Uranus and Neptune, speculating that the gravity of a large unseen ninth planet could have perturbed Uranus enough to account for the irregularities.

Clyde Tombaugh's discovery of Pluto in 1930 appeared to validate Lowell's hypothesis, and Pluto was officially named the ninth planet. In 1978, Pluto was conclusively determined to be too small for its gravity to affect the giant planets, resulting in a brief search for a tenth planet. The search was largely abandoned in the early 1990s, when a study of measurements made by the Voyager 2 spacecraft found that the irregularities observed in Uranus's orbit were due to a slight overestimation of Neptune's mass. After 1992, the discovery of numerous small icy objects with similar or even wider orbits than Pluto led to a debate over whether Pluto should remain a planet, or whether it and its neighbours should, like the asteroids, be given their own separate classification. Although a number of the larger members of this group were initially described as planets, in 2006 the International Astronomical Union (IAU) reclassified Pluto and its largest neighbours as dwarf planets, leaving Neptune the farthest known planet in the Solar System. (Full article...)
Jupiter
  • ...that the impact of a raindrop would be fatal if not for the property of fluid flow known as terminal velocity?

Selected image - show another

Motion of Sun (yellow), Earth (blue), and Mars (red). At left, Copernicus' heliocentric motion. At right, traditional geocentric motion, including the retrograde motion of Mars.
For simplicity, Mars' period of revolution is depicted as 2 years instead of 1.88, and orbits are depicted as perfectly circular or epitrochoid.

The Copernican Revolution was the paradigm shift from the Ptolemaic model of the heavens, which described the cosmos as having Earth stationary at the center of the universe, to the heliocentric model with the Sun at the center of the Solar System. This revolution consisted of two phases; the first being extremely mathematical in nature and the second phase starting in 1610 with the publication of a pamphlet by Galileo. Beginning with the publication of Nicolaus Copernicus's De revolutionibus orbium coelestium, contributions to the "revolution" continued until finally ending with Isaac Newton's work over a century later. (Full article...)

Related portals

Symbol support vote.svg Good article - show another

This is a Good article, an article that meets a core set of high editorial standards.

Einstein in 1921

Albert Einstein ( EYEN-styne; German: ['albt '?a?n?ta?n] ; 14 March 1879 - 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest physicists of all time. Einstein is best known for developing the theory of relativity, but he also made important contributions to the development of the theory of quantum mechanics. Relativity and quantum mechanics are together the two pillars of modern physics. His mass-energy equivalence formula E = mc2, which arises from relativity theory, has been dubbed "the world's most famous equation". His work is also known for its influence on the philosophy of science. He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect", a pivotal step in the development of quantum theory. His intellectual achievements and originality resulted in "Einstein" becoming synonymous with "genius".

In 1905, a year sometimes described as his annus mirabilis ('miracle year'), Einstein published four groundbreaking papers. These outlined the theory of the photoelectric effect, explained Brownian motion, introduced special relativity, and demonstrated mass-energy equivalence. Einstein thought that the laws of classical mechanics could no longer be reconciled with those of the electromagnetic field, which led him to develop his special theory of relativity. He then extended the theory to gravitational fields; he published a paper on general relativity in 1916, introducing his theory of gravitation. In 1917, he applied the general theory of relativity to model the structure of the universe. He continued to deal with problems of statistical mechanics and quantum theory, which led to his explanations of particle theory and the motion of molecules. He also investigated the thermal properties of light and the quantum theory of radiation, which laid the foundation of the photon theory of light. However, for much of the later part of his career, he worked on two ultimately unsuccessful endeavors. First, despite his great contributions to quantum mechanics, he opposed what it evolved into, objecting that nature "does not play dice". Second, he attempted to devise a unified field theory by generalizing his geometric theory of gravitation to include electromagnetism. As a result, he became increasingly isolated from the mainstream of modern physics. (Full article...)

September anniversaries

Births

Deaths


Categories

Category puzzle

Fundamentals: Concepts in physics | Constants | Physical quantities | Units of measure | Mass | Length | Time | Space | Energy | Matter | Force | Gravity | Electricity | Magnetism | Waves

Basic physics: Mechanics | Electromagnetism | Statistical mechanics | Thermodynamics | Quantum mechanics | Theory of relativity | Optics | Acoustics

Specific fields: Acoustics | Astrophysics | Atomic physics | Molecular physics | Optical physics | Computational physics | Condensed matter physics | Nuclear physics | Particle physics | Plasma physics

Tools: Detectors | Interferometry | Measurement | Radiometry | Spectroscopy | Transducers

Background: Physicists | History of physics | Philosophy of physics | Physics education | Physics journals | Physics organizations

Other: Physics in fiction | Pseudophysics | Physics lists | Physics software | Physics stubs

General images

The following are images from various physics-related articles on Wikipedia.

More recognized content

Symbol support vote.svg

Good articles

Physics topics

Classical physics traditionally includes the fields of mechanics, optics, electricity, magnetism, acoustics and thermodynamics. The term Modern physics is normally used for fields which rely heavily on quantum theory, including quantum mechanics, atomic physics, nuclear physics, particle physics and condensed matter physics. General and special relativity are usually considered to be part of modern physics as well.

Fundamental Concepts Classical Physics Modern Physics Cross Discipline Topics
Continuum Solid Mechanics Fluid Mechanics Geophysics
Motion Classical Mechanics Analytical mechanics Mathematical Physics
Kinetics Kinematics Kinematic chain Robotics
Matter Classical states Modern states Nanotechnology
Energy Chemical Physics Plasma Physics Materials Science
Cold Cryophysics Cryogenics Superconductivity
Heat Heat transfer Transport Phenomena Combustion
Entropy Thermodynamics Statistical mechanics Phase transitions
Particle Particulates Particle physics Particle accelerator
Antiparticle Antimatter Annihilation physics Gamma ray
Waves Oscillation Quantum oscillation Vibration
Gravity Gravitation Gravitational wave Celestial mechanics
Vacuum Pressure physics Vacuum state physics Quantum fluctuation
Random Statistics Stochastic process Brownian motion
Spacetime Special Relativity General Relativity Black holes
Quanta Quantum mechanics Quantum field theory Quantum computing
Radiation Radioactivity Radioactive decay Cosmic ray
Light Optics Quantum optics Photonics
Electrons Solid State Condensed Matter Symmetry breaking
Electricity Electrical circuit Electronics Integrated circuit
Electromagnetism Electrodynamics Quantum Electrodynamics Chemical Bonds
Strong interaction Nuclear Physics Quantum Chromodynamics Quark model
Weak interaction Atomic Physics Electroweak theory Radioactivity
Standard Model Fundamental interaction Grand Unified Theory Higgs boson
Information Information science Quantum information Holographic principle
Life Biophysics Quantum Biology Astrobiology
Conscience Neurophysics Quantum mind Quantum brain dynamics
Cosmos Astrophysics Cosmology Observable universe
Cosmogony Big Bang Mathematical universe Multiverse
Chaos Chaos theory Quantum chaos Perturbation theory
Complexity Dynamical system Complex system Emergence
Quantization Canonical quantization Loop quantum gravity Spin foam
Unification Quantum gravity String theory Theory of Everything

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Study Guides
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wikivoyage 
Travel guides

Wiktionary 
Definitions

Wikidata 
Database

Sources

Portals on Wikipedia

Purge server cache


  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Portal:Physics
 



 



 
Music Scenes