Portal:Electronics
Get Portal:Electronics essential facts below. View Videos or join the Portal:Electronics discussion. Add Portal:Electronics to your PopFlock.com topic list for future reference or share this resource on social media.
Portal:Electronics

The Electronics Portal

Surface-mount electronic components

Electronics comprises the physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter. It uses active devices to control electron flow by amplification and rectification, which distinguishes it from classical electrical engineering which uses passive effects such as resistance, capacitance and inductance to control current flow.

Electronics has had a major effect on the development of modern society. The identification of the electron in 1897, along with the subsequent invention of the vacuum tube which could amplify and rectify small electrical signals, inaugurated the field of electronics and the electron age. This distinction started around 1906 with the invention by Lee De Forest of the triode, which made electrical amplification of weak radio signals and audio signals possible with a non-mechanical device. Until 1950, this field was called "radio technology" because its principal application was the design and theory of radio transmitters, receivers, and vacuum tubes.

The term "solid-state electronics" emerged after the first working transistor was invented by William Shockley, Walter Houser Brattain and John Bardeen at Bell Labs in 1947. The MOSFET (MOS transistor) was later invented by Mohamed Atalla and Dawon Kahng at Bell Labs in 1959. The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses, revolutionizing the electronics industry, and playing a central role in the microelectronics revolution and Digital Revolution. The MOSFET has since become the basic element in most modern electronic equipment, and is the most widely used electronic device in the world.

Electronics is widely used in information processing, telecommunication, and signal processing. The ability of electronic devices to act as switches makes digital information-processing possible. Interconnection technologies such as circuit boards, electronics packaging technology, and other varied forms of communication infrastructure complete circuit functionality and transform the mixed electronic components into a regular working system, called an electronic system; examples are computers or control systems. An electronic system may be a component of another engineered system or a standalone device. most electronic devices use semiconductor components to perform electron control. Commonly, electronic devices contain circuitry consisting of active semiconductors supplemented with passive elements; such a circuit is described as an electronic circuit. Electronics deals with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes, integrated circuits, optoelectronics, and sensors, associated passive electrical components, and interconnection technologies. The nonlinear behaviour of active components and their ability to control electron flows makes amplification of weak signals possible.

The study of semiconductor devices and related technology is considered a branch of solid-state electronics. (Full article...)

Selected biography

Thomas Edison, 1878.jpg

Thomas Alva Edison (February 11, 1847 – October 18, 1931) was an American inventor and businessman who developed many devices which greatly influenced life worldwide into the 21st century. He was one of the first inventors to apply the principles of mass production to the process of invention, and can therefore be credited with the creation of the first industrial research laboratory. Edison is considered one of the most prolific inventors in history, holding 1,097 U.S. patents, as well as many patents in the United Kingdom, France, and Germany.

Selected design

Monoestable.png
Credit: commons:User:PACO
Schematic of a monostable multivibrator.

Selected article

Capacitance is a measure of the amount of electric charge stored (or separated) for a given electric potential. The capacitance of the majority of capacitors used in electronic circuits is several orders of magnitude smaller than the farad. The energy (measured in joules) stored in a capacitor is equal to the work done to charge it.

In a capacitor, there are two conducting electrodes which are insulated from one another. The charge on the electrodes is +Q and -Q, and V represents the potential difference between the electrodes. The SI unit of capacitance is the farad; 1 farad = 1 coulomb per volt.

The capacitance can be calculated if the geometry of the conductors and the dielectric properties of the insulator between the conductors are known, such as above, where; C is the capacitance in farads, ? is the permittivity of the insulator used (or ?0 for a vacuum), A is the area of each plane electrode in square metres, d is the separation between the electrodes in metres. The equation is a good approximation if d is small compared to the other dimensions of the electrodes.

Selected image

Transformer3d col3.svg
Credit: User:BillC
Idealised single-phase transformer showing path of magnetic flux through the core.

Related portals

Main topics

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Study Guides
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database

Portals

Purge server cache


  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Portal:Electronics
 



 



 
Music Scenes