Orders of Magnitude (energy)
Get Orders of Magnitude Energy essential facts below. View Videos or join the Orders of Magnitude Energy discussion. Add Orders of Magnitude Energy to your PopFlock.com topic list for future reference or share this resource on social media.
Orders of Magnitude Energy

This list compares various energies in joules (J), organized by order of magnitude.

Below 1 J

List of orders of magnitude for energy
Factor (joules) SI prefix Value Item
10-34   6.626×10-34J Photon energy of a photon with a frequency of 1 hertz.[1]
10-33   2×10-33J Average kinetic energy of translational motion of a molecule at the lowest temperature reached, 100 picokelvins as of 1999[2]
10-28   6.6×10-28J Energy of a typical AM radio photon (1 MHz) (4×10-9 eV)[3]
10-24 Yocto- (yJ) 1.6×10-24J Energy of a typical microwave oven photon (2.45 GHz) (1×10-5 eV)[4][5]
10-23   2×10-23J Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[6][7]
10-22   2-3000×10-22J Energy of infrared light photons[8]
10-21 Zepto- (zJ) 1.7×10-21J 1kJ/mol, converted to energy per molecule[9]
2.1×10-21J Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[10]
2.856×10-21J By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information
3-7×10-21J Energy of a van der Waals interaction between atoms (0.02-0.04 eV)[11][12]
4.1×10-21J The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[13]
7-22×10-21J Energy of a hydrogen bond (0.04 to 0.13 eV)[11][14]
10-20   4.5×10-20J Upper bound of the mass-energy of a neutrino in particle physics (0.28 eV)[15][16]
10-19   1.6×10-19J ?1 electronvolt (eV)[17]
3-5×10-19J Energy range of photons in visible light (?1.6-3.1 eV)[18][19]
3-14×10-19J Energy of a covalent bond (2-9 eV)[11][20]
5-200×10-19J Energy of ultraviolet light photons[8]
10-18 Atto- (aJ) 2.18×10-18J Ground state ionization energy of hydrogen (13.6 eV)
10-17   2-2000×10-17J Energy range of X-ray photons[8]
10-16      
10-15 Femto- (fJ) 3 × 10-15J Average kinetic energy of one human red blood cell.[21][22][23]
10-14   1×10-14J Sound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.[24][25][26]
> 2×10-14J Energy of gamma ray photons[8]
2.7×10-14J Upper bound of the mass-energy of a muon neutrino[27][28]
8.2×10-14J Rest mass-energy of an electron[29]
10-13   1.6×10-13J 1 megaelectronvolt (MeV)[30]
2.3×10-13J Energy released by a single event of two protons fusing into deuterium (1.44 megaelectronvolt MeV)[31]
10-12 Pico- (pJ) 2.3×10-12J Kinetic energy of neutrons produced by DT fusion, used to trigger fission (14.1 MeV)[32][33]
10-11   3.4×10-11J Average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[34][35]
10-10   1.5030×10-10J Rest mass-energy of a proton[36]
1.505×10-10J Rest mass-energy of a neutron[37]
1.6×10-10J 1 gigaelectronvolt (GeV)[38]
3×10-10J Rest mass-energy of a deuteron[39]
6×10-10J Rest mass-energy of an alpha particle[40]
7×10-10J Energy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).[41]
10-9 Nano- (nJ) 1.6×10-9J 10 GeV[42]
8×10-9J Initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[43][44]
10-8   1.3×10-8J Mass-energy of a W boson (80.4 GeV)[45][46]
1.5×10-8J Mass-energy of a Z boson (91.2 GeV)[47][48]
1.6×10-8J 100 GeV[49]
2×10-8J Mass-energy of the Higgs Boson (125.1 GeV)[50]
6.4×10-8J Operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[51][52]
10-7   1×10-7J ? 1 erg[53]
1.6×10-7J 1 TeV (teraelectronvolt),[54] about the kinetic energy of a flying mosquito[55]
10-6 Micro- (?J) 1.04×10-6J Energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)[56][57]
10-5      
10-4   1.0×10-4J Energy released by a typical radioluminescent wristwatch in 1 hour[58][59] (1 µCi × 4.871 MeV × 1 hr)
10-3 Milli- (mJ) 3.0×10-3J Energy released by a P100 atomic battery in 1 hour[60] (2.4 V × 350 nA × 1 hr)
10-2 Centi- (cJ) 4.0×10-2J Use of a typical LED for 1 second[61] (2.0 V × 20 mA × 1 s)
10-1 Deci- (dJ) 1.1×10-1J Energy of an American half-dollar falling 1 metre[62][63]

1 to 105 J

100 J 1J ? 1 N·m (newton-metre)
1J ? 1 W·s (watt-second)
1J Kinetic energy produced as an extra small apple (~100 grams[64]) falls 1 meter against Earth's gravity[65]
1J Energy required to heat 1 gram of dry, cool air by 1 degree Celsius[66]
1.4J ? 1 ft·lbf (foot-pound force)[53]
4.184J ? 1 thermochemical calorie (small calorie)[53]
4.1868J ? 1 International (Steam) Table calorie[67]
8J Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[68][69]
101 Deca- (daJ) 1×101J Flash energy of a typical pocket camera electronic flash capacitor @ [70][71]
3.7-40×101 Kinetic energy of a punch.[72]
5×101J The most energetic cosmic ray ever detected[73] was most likely a single proton traveling only slightly slower than the speed of light.[74]
102 Hecto- (hJ) 1.5×102 to 3.6×102J Energy delivered by a biphasic external electric shock (defibrillation), usually during adult cardiopulmonary resuscitation for cardiac arrest.
3×102J Energy of a lethal dose of X-rays[75]
3×102J Kinetic energy of an average person jumping as high as they can[76][77][78]
3.3×102J Energy to melt 1 g of ice[79]
> 3.6×102J Kinetic energy of 800 gram[80] standard men's javelin thrown at > 30 m/s[81] by elite javelin throwers[82]
5-20×102J Energy output of a typical photography studio strobe light in a single flash[83]
6×102J Kinetic energy of 2 kg[84] standard men's discus thrown at 24.4 m/s[] by the world record holder Jürgen Schult[85]
6×102J Use of a 10-watt flashlight for 1 minute
7.5×102J A power of 1 horsepower applied for 1 second[53]
7.8×102J Kinetic energy of 7.26 kg[86] standard men's shot thrown at 14.7 m/s[] by the world record holder Randy Barnes[87]
8.01×102J Amount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity)
103 Kilo- (kJ) 1.1×103J ? 1 British thermal unit (BTU), depending on the temperature[53]
1.4×103J Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[88]
1.8×103J Kinetic energy of M16 rifle bullet (5.56×45mm NATO M855, 4.1 g fired at 930 m/s)[89]
2.3×103J Energy to vaporize 1 g of water into steam[90]
3×103J Lorentz force can crusher pinch[91]
3.4×103J Kinetic energy of world-record men's hammer throw (7.26 kg[92] thrown at 30.7 m/s[93] in 1986)[94]
3.6×103J ? 1 W·h (watt-hour)[53]
4.2×103J Energy released by explosion of 1 gram of TNT[53][95]
4.2×103J ? 1 food Calorie (large calorie)
~7×103J Muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[96]
9×103J Energy in an alkaline AA battery[97]
104   1.7×104J Energy released by the metabolism of 1 gram of carbohydrates[98] or protein[99]
3.8×104J Energy released by the metabolism of 1 gram of fat[100]
4-5×104J Energy released by the combustion of 1 gram of gasoline[101]
5×104J Kinetic energy of 1 gram of matter moving at 10 km/s[102]
105   Kinetic energy of an automobile at highway speeds (1 to 5 tons[103] at or )[104]
5×105J Kinetic energy of 1 gram of a meteor hitting Earth[105]

106 to 1011 J

106 Mega- (MJ) 1×106J Kinetic energy of a 2 tonne[103] vehicle at 32 metres per second (115 km/h or 72 mph)[106]
1.2×106J Approximate food energy of a snack such as a Snickers bar (280 food calories)[107]
3.6×106J = 1 kWh (kilowatt-hour) (used for electricity)[53]
4.2×106J Energy released by explosion of 1 kilogram of TNT[53][95]
8.4×106J Recommended food energy intake per day for a moderately active woman (2000 food calories)[108][109]
107   1×107J Kinetic energy of the armor-piercing round fired by the ISU-152 assault gun[110][]
1.1×107J Recommended food energy intake per day for a moderately active man (2600 food calories)[108][111]
3.7×107J $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[112][113][114]
4×107J Energy from the combustion of 1 cubic meter of natural gas[115]
4.2×107J Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[116]
6.3×107J Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[117]
108   1×108J Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots)[]
1.1×108J ? 1 therm, depending on the temperature[53]
1.1×108J ? 1 Tour de France, or ~90 hours[118] ridden at 5 W/kg[119] by a 65 kg rider[120]
7.3×108J ? Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude)[]
109 Giga- (GJ) 1-10×109J Energy in an average lightning bolt[121] (thunder)
1.1×109J Magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[122]
1.2×109J Inflight 100-ton Boeing 757-200 at 300 knots (154 m/s)
1.4×109J Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh)[123][124]
2×109J Energy of an ordinary gasoline tank of a car.[101][125][126]
2×109J The unit of energy in Planck units[127]
3×109J Inflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s)
3.3×109J Approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[128][129]
4.2×109J Energy released by explosion of 1 ton of TNT.
4.5×109J Average annual energy usage of a standard refrigerator[130][131]
6.1×109J ? 1 bboe (barrel of oil equivalent)[132]
1010   1.9×1010J Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 511 knots or 263 m/s)
4.2×1010J ? 1 toe (ton of oil equivalent)[132]
4.6×1010J Yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[133][134]
7.3×1010J Energy consumed by the average U.S. automobile in the year 2000[135][136][137]
8.6×1010J ? 1 MW·d (megawatt-day), used in the context of power plants[138]
8.8×1010J Total energy released in the nuclear fission of one gram of uranium-235[34][35][139]
1011   2.4×1011J Approximate food energy consumed by an average human in an 80-year lifetime.[140]

1012 to 1017 J

1012 Tera- (TJ) 3.4×1012J Maximum fuel energy of an Airbus A330-300 (97,530 liters[141] of Jet A-1[142])[143]
3.6×1012J 1 GW·h (gigawatt-hour)[144]
4×1012J Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[145] thermal efficiency of reactor[146][147]
4.2×1012J Energy released by explosion of 1 kiloton of TNT[53][148]
6.4×1012J Energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[149] of Jet A-1[142])[150]
1013   1.1×1013J Energy of the maximum fuel an Airbus A380 can carry (320,000 liters[151] of Jet A-1[142])[152]
1.2×1013J Orbital kinetic energy of the International Space Station (417 tonnes[153] at 7.7 km/s[154])[155]
6.3×1013J Yield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[156][157]
9×1013J Theoretical total mass-energy of 1 gram of matter[158]
1014   1.8×1014J Energy released by annihilation of 1 gram of antimatter and matter
3.75×1014J Total energy released by the Chelyabinsk meteor.[159]
6×1014J Energy released by an average hurricane in 1 second[160]
1015 Peta- (PJ) > 1015J Energy released by a severe thunderstorm[161]
1×1015J Yearly electricity consumption in Greenland as of 2008[162][163]
4.2×1015J Energy released by explosion of 1 megaton of TNT[53][164]
1016   1×1016J Estimated impact energy released in forming Meteor Crater[]
1.1×1016J Yearly electricity consumption in Mongolia as of 2010[162][165]
9×1016J Mass-energy in 1 kilogram of antimatter (or matter)[166]
1017   1×1017J Energy released on the Earth's surface by the magnitude 9.1-9.3 2004 Indian Ocean earthquake[167]
1.7×1017J Total energy from the Sun that strikes the face of the Earth each second[168]
2.1×1017J Yield of the Tsar Bomba, the largest nuclear weapon ever tested (50 megatons)[169][170]
4.2×1017J Yearly electricity consumption of Norway as of 2008[162][171]
4.5×1017J Approximate energy needed to accelerate one ton to one-tenth of the speed of light
8×1017J Estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[172][173][174]

1018 to 1023 J

1018 Exa- (EJ) 1.4×1018J Yearly electricity consumption of South Korea as of 2009[162][175]
1019   1.2×1019J Explosive yield of global nuclear arsenal[176]
1.4×1019J Yearly electricity consumption in the U.S. as of 2009[162][177]
1.4×1019J Yearly electricity production in the U.S. as of 2009[178][179]
5×1019J Energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)[160]
6.4×1019J Yearly electricity consumption of the world as of 2008[180][181]
6.8×1019J Yearly electricity generation of the world as of 2008[180][182]
1020   5×1020J Total world annual energy consumption in 2010[183][184]
8×1020J Estimated global uranium resources for generating electricity 2005[185][186][187][188]
1021 Zetta- (ZJ) 6.9×1021J Estimated energy contained in the world's natural gas reserves as of 2010[183][189]
7.9×1021J Estimated energy contained in the world's petroleum reserves as of 2010[183][190]
1022   1.5×1022J Total energy from the Sun that strikes the face of the Earth each day[168][191]
2.4×1022J Estimated energy contained in the world's coal reserves as of 2010[183][192]
2.9×1022J Identified global uranium-238 resources using fast reactor technology[185]
3.9×1022J Estimated energy contained in the world's fossil fuel reserves as of 2010[183][193]
4×1022J Estimated total energy released by the magnitude 9.1-9.3 2004 Indian Ocean earthquake[194]
1023  
2.2×1023J Total global uranium-238 resources using fast reactor technology[185]
4.2×1023J The energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[195]

Over 1023 J

1024 Yotta- (YJ) 5.5×1024J Total energy from the Sun that strikes the face of the Earth each year[168][196]
1025   6×1025J Upper limit of energy released by a solar flare[197]
1026   >1026J Estimated energy of early Archean asteroid impacts[198]
3.8×1026J Total energy output of the Sun each second[199]
1027   1×1027J Estimate of the energy released by the impact that created the Caloris basin on Mercury[200]
~3×1027 J Estimate of energy required to evaporate all water on surface of Earth
1028   3.8×1028J Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[201][202]
1029   2.1×1029J Rotational energy of the Earth[203][204][205]
1030   1.8×1030J Gravitational binding energy of Mercury
1031   ~2×1031J The most energetic stellar superflare to date (S Fornacis)[206]
 3.3×1031J Total energy output of the Sun each day[199][207]
1032   2×1032J Gravitational binding energy of the Earth[208]
1033   2.7×1033J Earth's kinetic energy in its orbit[209]
1034   1.2×1034J Total energy output of the Sun each year[199][210]
1039   1-5×1039 J Energy of the giant flare (starquake) released by SGR 1806-20[211][212][213]
6.6×1039 J Theoretical total mass-energy of the Moon
1041   2.276×1041J Gravitational binding energy of the Sun[214]
5.4×1041J Theoretical total mass-energy of the Earth[215][216]
1043   5×1043J Total energy of all gamma rays in a typical gamma-ray burst[217][218]
1044 ~1044 J Average value of a Tidal Disruption Event (TDE) in optical/UV bands[219]
1-2×1044J Estimated energy released in a supernova,[220] sometimes referred to as a foe
Approximate lifetime energy output of the Sun.
~1044-45 Estimated kinetic energy released by FBOT CSS161010[221]
1045   Energy released by hypernova ASASSN-15lh[222]
2.3×1045 J Energy released by the very energetic supernova PS1-10adi, about twice the energy of ASASSN-15lh[223][224]
?5 × 1045 J Energy released by the most energetic supernova to date, SN 2016aps[225][226][227][228]
>1045 J Estimated energy of a magnetorotational hypernova[229]
few times×1045J Beaming-corrected 'True' total energy (Energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst[230][231][232][233][234]
1046   >1046J Estimated energy released in a hypernova,[235][236] in a pair-instability supernova[237] and in theoretical quark-novae[238]
1047 1045-47 J Estimated energy of stellar mass rotational black holes by vacuum polarization in a electromagnetic field[239][240]
>1047 J Total energy of a very energetic and relativistic jetted Tidal Disruption Event (TDE)[241]
1.8×1047J Theoretical total mass-energy of the Sun[242][243]
5.4×1047J Mass-energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO (GW150914)[244]
8.6×1047J Mass-energy emitted as gravitational waves during the most energetic black hole merger observed until 2020 (GW170729)[245]
8.8×1047J GRB 080916C - the most powerful Gamma-Ray Burst (GRB) ever recorded - total 'apparent'/isotropic (not corrected for beaming) energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the sun's mass turned to energy.[246][247]
1048 ~1048 J Estimated energy of a supermassive Population III star supernova, denominated "General Relativistic Instability Supernova."[248][249]
~1.2×1048 J Approximate energy released in the most energetic black hole merging to date (GW190521), which originated the first intermediate-mass black hole ever detected[250][251][252][253][254]
1050 ?1050 J Upper limit of 'apparent'/isotropic energy (Eiso) of Population III stars Gamma-Ray Bursts (GRBs).[255]
1053 >1053 J Mechanical energy of very energetic so-called "quasar tsunamis"[256][257]
  6×1053J Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[258]
1054   3×1054J Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[259]
1055   >1055J Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421,[260] Ophiucus Supercluster Explosion[261] and supermassive black holes mergings[262][263]
1057 ~1057 J Estimated rotational energy of M87 SMBH and total energy of the most luminous quasars over Gyr time-scales[264][265]
~2×1057 J Estimated thermal energy of the Bullet Cluster of galaxies[266]
1058 ~1058 J Estimated total energy (in shockwaves, turbulence, gases heating up, gravitational force) of galaxy clusters mergings[267]
  4×1058J Visible mass-energy in our galaxy, the Milky Way[268][269]
1059   1×1059J Total mass-energy of our galaxy, the Milky Way, including dark matter and dark energy[270][271]
1062   1-2×1062J Total mass-energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[272]
1069 4×1069J Estimated total mass-energy of the observable universe[273]

SI multiples

SI multiples of joule (J)
Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10-1 J dJ decijoule 101 J daJ decajoule
10-2 J cJ centijoule 102 J hJ hectojoule
10-3 J mJ millijoule 103 J kJ kilojoule
10-6 J µJ microjoule 106 J MJ megajoule
10-9 J nJ nanojoule 109 J GJ gigajoule
10-12 J pJ picojoule 1012 J TJ terajoule
10-15 J fJ femtojoule 1015 J PJ petajoule
10-18 J aJ attojoule 1018 J EJ exajoule
10-21 J zJ zeptojoule 1021 J ZJ zettajoule
10-24 J yJ yoctojoule 1024 J YJ yottajoule

The joule is named after James Prescott Joule. As with every SI unit named for a person, its symbol starts with an upper case letter (J), but when written in full it follows the rules for capitalisation of a common noun; i.e., "joule" becomes capitalised at the beginning of a sentence and in titles, but is otherwise in lower case.

See also

Notes

  1. ^ "Planck's constant | physics | Britannica.com". britannica.com. Retrieved 2016.
  2. ^ Calculated: KEavg ? (3/2) × T × 1.38×10 = (3/2) × 1×10 × 1.38×10 ? 2.07×10J
  3. ^ Calculated: Ephoton = h? = 6.626×10J-s × 1×10 Hz = 6.6×10J. In eV: 6.6×10J / 1.6×10J/eV = 4.1×10 eV.
  4. ^ Cheung, Howard (1998). Elert, Glenn (ed.). "Frequency of a microwave oven". The Physics Factbook. Retrieved 2022.
  5. ^ Calculated: Ephoton = h? = 6.626×10J-s × 2.45×10 Hz = 1.62×10J. In eV: 1.62×10J / 1.6×10J/eV = 1.0×10 eV.
  6. ^ "Boomerang Nebula boasts the coolest spot in the Universe". JPL. Retrieved 2011.
  7. ^ Calculated: KEavg ? (3/2) × T × 1.38×10 = (3/2) × 1 × 1.38×10 ? 2.07×10J
  8. ^ a b c d "Wavelength, Frequency, and Energy". Imagine the Universe. NASA. Archived from the original on 18 November 2001. Retrieved 2011.
  9. ^ Calculated: 1×10J / 6.022×10 entities per mole = 1.7×10J per entity
  10. ^ Calculated: 1.381×10J/K × 298.15 K / 2 = 2.1×10J
  11. ^ a b c "Bond Lengths and Energies". Chem 125 notes. UCLA. Archived from the original on 23 August 2011. Retrieved 2011.
  12. ^ Calculated: 2 to 4kJ/mol = 2×10J / 6.022×10 molecules/mol = 3.3×10J. In eV: 3.3×10J / 1.6×10J/eV = 0.02 eV. 4×10J / 6.022×10 molecules/mol = 6.7×10J. In eV: 6.7×10J / 1.6×10J/eV = 0.04 eV.
  13. ^ Ansari, Anjum. "Basic Physical Scales Relevant to Cells and Molecules". Physics 450. Retrieved 2011.
  14. ^ Calculated: 4 to 13kJ/mol. 4kJ/mol = 4×10J / 6.022×10 molecules/mol = 6.7×10J. In eV: 6.7×10J / 1.6×10 eV/J = 0.042 eV. 13kJ/mol = 13×10J / 6.022×10 molecules/mol = 2.2×10J. In eV: 13×10J / 6.022×10 molecules/mol / 1.6×10 eV/J = 0.13 eV.
  15. ^ Thomas, S.; Abdalla, F.; Lahav, O. (2010). "Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey". Physical Review Letters. 105 (3): 031301. arXiv:0911.5291. Bibcode:2010PhRvL.105c1301T. doi:10.1103/PhysRevLett.105.031301. PMID 20867754. S2CID 23349570.
  16. ^ Calculated: 0.28 eV × 1.6×10J/eV = 4.5×10J
  17. ^ "CODATA Value: electron volt". NIST. Retrieved 2011.
  18. ^ "BASIC LAB KNOWLEDGE AND SKILLS". Archived from the original on 15 May 2013. Retrieved 2011. Visible wavelengths are roughly from 390 nm to 780 nm
  19. ^ Calculated: E = hc/?. E780 nm = 6.6×10 kg-m2/s × 3×10 m/s / (780×10 m) = 2.5×10J. E_390 _nm = 6.6×10 kg-m2/s × 3×10 m/s / (390×10 m) = 5.1×10J
  20. ^ Calculated: 50 kcal/mol × 4.184J/calorie / 6.0×10e23 molecules/mol = 3.47×10J. (3.47×10J / 1.60×10 eV/J = 2.2 eV.) and 200 kcal/mol × 4.184J/calorie / 6.0×10e23 molecules/mol = 1.389×10J. (7.64×10J / 1.60×10 eV/J = 8.68 eV.)
  21. ^ Phillips, Kevin; Jacques, Steven; McCarty, Owen (2012). "How much does a cell weigh?". Physical Review Letters. 109 (11): 118105. Bibcode:2012PhRvL.109k8105P. doi:10.1103/PhysRevLett.109.118105. PMC 3621783. PMID 23005682. Roughly 27 picograms
  22. ^ Bob Berman. "Our Bodies' Velocities, By the Numbers". Retrieved 2016. The [...] blood [...] flow[s] at an average speed of 3 to 4 mph
  23. ^ Calculated: 1/2 × 27×10 g × (3.5 miles per hour)2 = 3×10J
  24. ^ "Physics of the Body" (PDF). Notre Dame. Archived from the original (PDF) on 6 November 2016. Retrieved 2016.. "The eardrum is a [...] membran[e] with an area of 65 mm2."
  25. ^ "Intensity and the Decibel Scale". Physics Classroom. Retrieved 2016.
  26. ^ Calculated: two eardrums ? 1 cm2. 1×10 W/m2 × 1×10 m2 × 1 s = 1×10J
  27. ^ Thomas J Bowles (2000). P. Langacker (ed.). Neutrinos in physics and astrophysics: from 10-33 to 1028 cm: TASI 98 : Boulder, Colorado, USA, 1-26 June 1998. World Scientific. p. 354. ISBN 978-981-02-3887-2. Retrieved 2011. an upper limit ov m_v_u < 170 keV
  28. ^ Calculated: 170×10 eV × 1.6×10J/eV = 2.7×10J
  29. ^ "electron mass energy equivalent". NIST. Retrieved 2011.
  30. ^ "Conversion from eV to J". NIST. Retrieved 2011.
  31. ^ "How much energy is released when hydrogen is fused to produce one kilo of helium?". 11 November 2017. Retrieved 2021.
  32. ^ Muller, Richard A. (2002). "The Sun, Hydrogen Bombs, and the physics of fusion". Archived from the original on 2 April 2012. Retrieved 2011. The neutron comes out with high energy of 14.1 MeV
  33. ^ "Conversion from eV to J". NIST. Retrieved 2011.
  34. ^ a b "Energy From Uranium Fission". HyperPhysics. Retrieved 2011.
  35. ^ a b "Conversion from eV to J". NIST. Retrieved 2011.
  36. ^ "proton mass energy equivalent". NIST. Retrieved 2011.
  37. ^ "neutron mass energy equivalent". NIST. Retrieved 2011.
  38. ^ "Conversion from eV to J". NIST. Retrieved 2011.
  39. ^ "deuteron mass energy equivalent". NIST. Retrieved 2011.
  40. ^ "alpha particle mass energy equivalent". NIST. Retrieved 2011.
  41. ^ Calculated: 7×10 g × 9.8 m/s2 × 1×10 m
  42. ^ "Conversion from eV to J". NIST. Retrieved 2011.
  43. ^ Myers, Stephen. "The LEP Collider". CERN. Retrieved 2011. the LEP machine energy is about 50 GeV per beam
  44. ^ Calculated: 50×10 eV × 1.6×10J/eV = 8×10J
  45. ^ "W". PDG Live. Particle Data Group. Archived from the original on 17 July 2012. Retrieved 2011.
  46. ^ "Conversion from eV to J". NIST. Retrieved 2011.
  47. ^ Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M. -C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; d'Ambrosio, G.; Damour, T.; De Gouvêa, A.; et al. (2008). "Review of Particle Physics?". Physics Letters B. 667 (1): 1-6. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018. hdl:1854/LU-685594. Archived from the original on 12 July 2012.
  48. ^ "Conversion from eV to J". NIST. Retrieved 2011.
  49. ^ "Conversion from eV to J". NIST. Retrieved 2011.
  50. ^ ATLAS; CMS (26 March 2015). "Combined Measurement of the Higgs Boson Mass in pp Collisions at ?s=7 and 8 TeV with the ATLAS and CMS Experiments". Physical Review Letters. 114 (19): 191803. arXiv:1503.07589. Bibcode:2015PhRvL.114s1803A. doi:10.1103/PhysRevLett.114.191803. PMID 26024162. S2CID 1353272.
  51. ^ Adams, John. "400 GeV Proton Synchrotron". Excertp from the CERN Annual Report 1976. CERN. Retrieved 2011. A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976
  52. ^ Calculated: 400×10 eV × 1.6×10J/eV = 6.4×10J
  53. ^ a b c d e f g h i j k l "Appendix B8--Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI). NIST. 2 July 2009. 1.355818
  54. ^ "Conversion from eV to J". NIST. Retrieved 2011.
  55. ^ "Chocolate bar yardstick". Archived from the original on 26 February 2014. Retrieved 2014. A TeV is actually a very tiny amount of energy. A popular analogy is to a flying mosquito.
  56. ^ "First successful beam at record energy of 6.5 TeV". Retrieved 2015.
  57. ^ Calculated: 6.5×10 eV per beam × 1.6×10J/eV = 1.04×10J
  58. ^ "The radioactive series of radium-226" (PDF). CERN.
  59. ^ Jr., James G. Terrill; Ii, Samuel C. Ingraham; Moeller, Dade W. (1954). "Radium in the Healing Arts and in Industry: Radiation Exposure in the United States". Public Health Reports. 69 (3): 255-262. doi:10.2307/4588736. JSTOR 4588736. PMC 2024184. PMID 13134440.
  60. ^ "NanoTritium(TM): Next-gen Tritium Battery with Decade-Long Betavoltaic Battery Power | CityLabs". Retrieved 2022.
  61. ^ "LED - Basic Red 5mm - COM-09590 - SparkFun Electronics". www.sparkfun.com. Retrieved 2022.
  62. ^ "Coin specifications". United States Mint. Retrieved 2011. 11.340 g
  63. ^ Calculated: m×g×h = 11.34×10 kg × 9.8 m/s2 × 1 m = 1.1×10J
  64. ^ "Apples, raw, with skin (NDB No. 09003)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 2011.
  65. ^ Calculated: m×g×h = 1×10 kg × 9.8 m/s2 × 1 m = 1J
  66. ^ "Specific Heat of Dry Air". Engineering Toolbox. Retrieved 2011.
  67. ^ "Footnotes". NIST Guide to the SI. NIST. 2 July 2009.
  68. ^ "Physical Motivations". ULTRA Home Page (EUSO project). Dipartimento di Fisica di Torino. Retrieved 2011.
  69. ^ Calculated: 5×10 eV × 1.6×10J/ev = 8J
  70. ^ "Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics". Retrieved 2011. The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s.
  71. ^ "Teardown: Digital Camera Canon PowerShot |". electroelvis.com. 2 September 2012. Archived from the original on 1 August 2013. Retrieved 2013.
  72. ^ Pomeroy, Ross (1 January 2014). "How to Get Punched in the Face". RealClearScience.
  73. ^ "The Fly's Eye (1981-1993)". HiRes. Retrieved 2011.
  74. ^ Bird, D. J. (March 1995). "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation". Astrophysical Journal, Part 1. 441 (1): 144-150. arXiv:astro-ph/9410067. Bibcode:1995ApJ...441..144B. doi:10.1086/175344. S2CID 119092012.
  75. ^ "Ionizing Radiation". General Chemistry Topic Review: Nuclear Chemistry. Bodner Research Web. Retrieved 2011.
  76. ^ "Vertical Jump Test". Topend Sports. Retrieved 2011. 41-50 cm (males) 31-40 cm (females)
  77. ^ "Mass of an Adult". The Physics Factbook. Retrieved 2011. 70 kg
  78. ^ Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/s2 × 40×10 m = 274J
  79. ^ "Latent Heat of Melting of some common Materials". Engineering Toolbox. Retrieved 2013. 334kJ/kg
  80. ^ "Javelin Throw - Introduction". IAAF. Retrieved 2011.
  81. ^ Young, Michael. "Developing Event Specific Strength for the Javelin Throw" (PDF). Archived from the original (PDF) on 13 August 2011. Retrieved 2011. For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s
  82. ^ Calculated: 1/2 × 0.8 kg × (30 m/s)2 = 360J
  83. ^ Greenspun, Philip. "Studio Photography". Archived from the original on 29 September 2007. Retrieved 2011. Most serious studio photographers start with about 2000 watts-seconds
  84. ^ "Discus Throw - Introduction". IAAF. Retrieved 2011.
  85. ^ Calculated: 1/2 × 2 kg × (24.4 m/s)2 = 595.4J
  86. ^ "Shot Put - Introduction". IAAF. Retrieved 2011.
  87. ^ Calculated: 1/2 × 7.26 kg × (14.7 m/s)2 = 784J
  88. ^ Kopp, G.; Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance". Geophysical Research Letters. 38 (1): n/a. Bibcode:2011GeoRL..38.1706K. doi:10.1029/2010GL045777.
  89. ^ "Intermediate power ammunition for automatic assault rifles". Modern Firearms. World Guns. Archived from the original on 10 August 2013. Retrieved 2011.
  90. ^ "Fluids - Latent Heat of Evaporation". Engineering Toolbox. Retrieved 2013. 2257 kJ/kg
  91. ^ powerlabs.org - The PowerLabs Solid State Can Crusher!, 2002
  92. ^ "Hammer Throw - Introduction". IAAF. Retrieved 2011.
  93. ^ Otto, Ralf M. "HAMMER THROW WR PHOTOSEQUENCE - YURIY SEDYKH" (PDF). Retrieved 2011. The total release velocity is 30.7 m/sec
  94. ^ Calculated: 1/2 × 7.26 kg × (30.7 m/s)2 = 3420J
  95. ^ a b 4.2×10J/ton of TNT-equivalent × (1 ton/1×10 grams) = 4.2×10J/gram of TNT-equivalent
  96. ^ ".458 Winchester Magnum" (PDF). Accurate Powder. Western Powders Inc. Archived from the original (PDF) on 28 September 2007. Retrieved 2010.
  97. ^ "Battery energy storage in various battery sizes". AllAboutBatteries.com. Archived from the original on 4 December 2011. Retrieved 2011.
  98. ^ "Energy Density of Carbohydrates". The Physics Factbook. Retrieved 2011.
  99. ^ "Energy Density of Protein". The Physics Factbook. Retrieved 2011.
  100. ^ "Energy Density of Fats". The Physics Factbook. Retrieved 2011.
  101. ^ a b "Energy Density of Gasoline". The Physics Factbook. Retrieved 2011.
  102. ^ Calculated: E = 1/2 m×v2 = 1/2 × (1×10 kg) × (1×10 m/s)2 = 5×10J.
  103. ^ a b "List of Car Weights". LoveToKnow. Retrieved 2011. 3000 to 12000 pounds
  104. ^ Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×v2 = 1/2 × (1×10 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0×10J. E = 1/2 × (5×10 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15×10J.
  105. ^ Muller, Richard A. "Kinetic Energy in a meteor". Old Physics 10 notes. Archived from the original on 2 April 2012. Retrieved 2011.
  106. ^ Calculated: KE = 1/2 × 2×10 kg × (32 m/s)2 = 1.0×10J
  107. ^ "Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 2011.
  108. ^ a b "How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity". Healthy Weight Basics. National Heart Lung and Blood Institutde. Retrieved 2011.
  109. ^ Calculated: 2000 food calories = 2.0×10 cal × 4.184J/cal = 8.4×10J
  110. ^ Calculated: 1/2 × m × v2 = 1/2 × 48.78 kg × (655 m/s)2 = 1.0×10J.
  111. ^ Calculated: 2600 food calories = 2.6×10 cal × 4.184J/cal = 1.1×10J
  112. ^ "Table 3.3 Consumer Price Estimates for Energy by Source, 1970-2009". Annual Energy Review. US Energy Information Administration. 19 October 2011. Retrieved 2011. $28.90 per million BTU
  113. ^ Calculated J per dollar: 1 million BTU/$28.90 = 1×10 BTU / 28.90 dollars × 1.055×10J/BTU = 3.65×10J/dollar
  114. ^ Calculated cost per kWh: 1 kWh × 3.60×10J/kWh / 3.65×10J/dollar = 0.0986 dollar/kWh
  115. ^ "Energy in a Cubic Meter of Natural Gas". The Physics Factbook. Retrieved 2011.
  116. ^ "The Olympic Diet of Michael Phelps". WebMD. Retrieved 2011.
  117. ^ Cline, James E. D. "Energy to Space". Retrieved 2011. 6.27×10 Joules / Kg
  118. ^ "Tour de France Winners, Podium, Times". Bike Race Info. Retrieved 2011.
  119. ^ "Watts/kg". Flamme Rouge. Archived from the original on 2 January 2012. Retrieved 2011.
  120. ^ Calculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1×10J
  121. ^ Smith, Chris (6 March 2007). "How do Thunderstorms Work?". The Naked Scientists. Retrieved 2011. It discharges about 1-10 billion joules of energy
  122. ^ "Powering up ATLAS's mega magnet". Spotlight on... CERN. Archived from the original on 30 November 2011. Retrieved 2011. magnetic energy of 1.1 Gigajoules
  123. ^ "ITP Metal Casting: Melting Efficiency Improvement" (PDF). ITP Metal Casting. U.S. Department of Energy. Retrieved 2011. 377 kWh/mt
  124. ^ Calculated: 380 kW-h × 3.6×10J/kW-h = 1.37×10J
  125. ^ Bell Fuels. "Lead-Free Gasoline Material Safety Data Sheet". NOAA. Archived from the original on 20 August 2002. Retrieved 2008.
  126. ^ thepartsbin.com - Volvo Fuel Tank: Compare at The Parts Bin[permanent dead link], 6 May 2012
  127. ^
  128. ^ "Power of a Human Heart". The Physics Factbook. Retrieved 2011. The mechanical power of the human heart is ~1.3 watts
  129. ^ Calculated: 1.3J/s × 80 years × 3.16×10 s/year = 3.3×10J
  130. ^ "U.S. Household Electricity Uses: A/C, Heating, Appliances". U.S. HOUSEHOLD ELECTRICITY REPORT. EIA. Retrieved 2011. For refrigerators in 2001, the average UEC was 1,239 kWh
  131. ^ Calculated: 1239 kWh × 3.6×10J/kWh = 4.5×10J
  132. ^ a b Energy Units, by Arthur Smith, 21 January 2005
  133. ^ "Top 10 Biggest Explosions". Listverse. 28 November 2011. Retrieved 2011. a yield of 11 tons of TNT
  134. ^ Calculated: 11 tons of TNT-equivalent × 4.184×10J/ton of TNT-equivalent = 4.6×10J
  135. ^ "Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks". EPA. Retrieved 2011. 581 gallons of gasoline
  136. ^ "200 Mile-Per-Gallon Cars?". Archived from the original on 19 December 2011. Retrieved 2011. a gallon of gas ... 125 million joules of energy
  137. ^ Calculated: 581 gallons × 125×10J/gal = 7.26×10J
  138. ^ Calculated: 1×10 watts × 86400 seconds/day = 8.6×10J
  139. ^ Calculated: 3.44×10J/U-235-fission × 1×10 kg / (235 amu per U-235-fission × 1.66×10 amu/kg) = 8.82×10J
  140. ^ Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4×10J
  141. ^ "A330-300 Dimensions & key data". Airbus. Archived from the original on 16 January 2013. Retrieved 2011. 97530 litres
  142. ^ a b c "Archived copy" (PDF). Archived from the original (PDF) on 8 June 2011. Retrieved 2011.{{cite web}}: CS1 maint: archived copy as title (link)
  143. ^ Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38×10J
  144. ^ Calculated: 1×10 watts × 3600 seconds/hour
  145. ^ Weston, Kenneth. "Chapter 10. Nuclear Power Plants" (PDF). Energy Conversion. Archived from the original (PDF) on 5 October 2011. Retrieved 2011. The thermal efficiency of a CANDU plant is only about 29%
  146. ^ "CANDU and Heavy Water Moderated Reactors". Retrieved 2011. fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium
  147. ^ Calculated: 7500×10 watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3×10J of burnup energy. Electricity = burnup × ~29% efficiency = 3.8×10J
  148. ^ Calculated: 4.2×10J/ton of TNT-equivalent × 1×10 tons/megaton = 4.2×10J/megaton of TNT-equivalent
  149. ^ "747 Classics Technical Specs". Boeing. Archived from the original on 10 December 2007. Retrieved 2011. 183,380 L
  150. ^ Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36×10J
  151. ^ "A380-800 Dimensions & key data". Airbus. Archived from the original on 8 July 2012. Retrieved 2011. 320,000 L
  152. ^ Calculated: 320,000 L × 0.804 kg/L × 43.15  MJ/kg = 11.1×10J
  153. ^ "International Space Station: The ISS to Date". NASA. Retrieved 2011.
  154. ^ "The wizards of orbits". European Space Agency. Retrieved 2011. The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits
  155. ^ Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2×10J
  156. ^ "What was the yield of the Hiroshima bomb?". Warbird's Forum. Retrieved 2011. 21 kt
  157. ^ Calculated: 15 kt = 15×10 grams of TNT-equivalent × 4.2×10J/gram TNT-equivalent = 6.3×10J
  158. ^ "Conversion from kg toJ". NIST. Retrieved 2011.
  159. ^ "JPL - Fireballs and bolides". Jet Propulsion Laboratory. NASA. Retrieved 2017.
  160. ^ a b "How much energy does a hurricane release?". FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES. NOAA. Retrieved 2011.
  161. ^ "The Gathering Storms". COSMOS. Archived from the original on 4 April 2012. Retrieved 2011.
  162. ^ a b c d e "Country Comparison :: Electricity - consumption". The World Factbook. CIA. Archived from the original on 28 January 2012. Retrieved 2011.
  163. ^ Calculated: 288.6×10 kWh × 3.60×10J/kWh = 1.04×10J
  164. ^ Calculated: 4.2×10J/ton of TNT-equivalent × 1×10 tons/megaton = 4.2×10J/megaton of TNT-equivalent
  165. ^ Calculated: 3.02×10 kWh × 3.60×10J/kWh = 1.09×10J
  166. ^ Calculated: E = mc2 = 1 kg × (2.998×10 m/s)2 = 8.99×10J
  167. ^ "USGS Energy and Broadband Solution". National Earthquake Information Center, US Geological Survey. Archived from the original on 4 April 2010. Retrieved 2011.
  168. ^ a b c The Earth has a cross section of 1.274×1014 square meters and the solar constant is 1361 watts per square meter.
  169. ^ "The Soviet Weapons Program - The Tsar Bomba". The Nuclear Weapon Archive. Retrieved 2011.
  170. ^ Calculated: 50×10 tons TNT-equivalent × 4.2×10J/ton TNT-equivalent = 2.1×10J
  171. ^ Calculated: 115.6×10 kWh × 3.60×10J/kWh = 4.16×10J
  172. ^ Alexander, R. McNeill (1989). Dynamics of Dinosaurs and Other Extinct Giants. Columbia University Press. p. 144. ISBN 978-0-231-06667-9. the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy.
  173. ^ Calculated: 200×10 tons of TNT equivalent × 4.2×10J/ton of TNT equivalent = 8.4×10J
  174. ^ This value appears to be referred only to the third explosion on 27th August, 10.02 a.m. According to reports, the third explosion was by far the largest; it is associated to the biggest sound in the recorded history, the highest tsunami during the eruption and the most powerful shock waves rounded the world several times. 200 Megatons of TNT are often referred as the total energy released by the entire eruption, but it's plausible that are rather the energy released by the single third explosion, considering the effects.[1][2]
  175. ^ Calculated: 402×10 kWh × 3.60×10J/kWh = 1.45×10J
  176. ^ Mizokami, Kyle (1 April 2019). "Here's What Would Happen If We Blew Up All the World's Nukes at Once". Popular Mechanics. Retrieved 2021.
  177. ^ Calculated: 3.741×10 kWh × 3.600×10J/kWh = 1.347×10J
  178. ^ "United States". The World Factbook. USA. Retrieved 2011.
  179. ^ Calculated: 3.953×10 kWh × 3.600×10J/kWh = 1.423×10J
  180. ^ a b "World". The World Factbook. CIA. Retrieved 2011.
  181. ^ Calculated: 17.8×10 kWh × 3.60×10J/kWh = 6.41×10J
  182. ^ Calculated: 18.95×10 kWh × 3.60×10J/kWh = 6.82×10J
  183. ^ a b c d e "Statistical Review of World Energy 2011" (PDF). BP. Archived from the original (PDF) on 2 September 2011. Retrieved 2011.
  184. ^ Calculated: 12002.4×10 tonnes of oil equivalent × 42×10J/tonne of oil equivalent = 5.0×10J
  185. ^ a b c "Global Uranium Resources to Meet Projected Demand | International Atomic Energy Agency". iaea.org. June 2006. Retrieved 2016.
  186. ^ "U.S. Energy Information Administration, International Energy Generation".
  187. ^ "U.S. EIA International Energy Outlook 2007". eia.doe.gov. Retrieved 2016.
  188. ^ Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
  189. ^ Calculated: "6608.9 trillion cubic feet" => 6608.9×10 billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1×10 tonnes of oil equivalent/million tonnes of oil equivalent × 42×10J/tonne of oil equivalent = 6.9×10J
  190. ^ Calculated: "188.8 thousand million tonnes" => 188.8×10 tonnes of oil × 42×10J/tonne of oil = 7.9×10J
  191. ^ Calculated: 1.27×10 m2 × 1370 W/m2 × 86400 s/day = 1.5×10J
  192. ^ Calculated: 860938 million tonnes of coal => 860938×10 tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42×10J/tonne of oil equivalent = 2.4×10J
  193. ^ Calculated: natural gas + petroleum + coal = 6.9×10J + 7.9×10J + 2.4×10J = 3.9×10J
  194. ^ "USGS, Harvard Moment Tensor Solution". National Earthquake Information Center. 26 December 2004. Archived from the original on 17 January 2010. Retrieved 2011.
  195. ^ Schulte, Peter; Alegret, Laia; Arenillas, Ignacio; Arz, José A.; Barton, Penny J.; Bown, Paul R.; Bralower, Timothy J.; Christeson, Gail L.; Claeys, Philippe; Cockell, Charles S.; Collins, Gareth S.; Deutsch, Alexander; Goldin, Tamara J.; Goto, Kazuhisa; Grajales-Nishimura, José M. (5 March 2010). "The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary". Science. 327 (5970): 1214-1218. doi:10.1126/science.1177265. ISSN 0036-8075.
  196. ^ Calculated: 1.27×10 m2 × 1370 W/m2 × 86400 s/day = 5.5×10J
  197. ^ Carroll, Bradley; Ostlie, Dale (2017). An Introduction to Modern Astrophysics (2 ed.). ISBN 978-1-108-42216-1.
  198. ^ Zahnle, K. J. (26 August 2018). "Climatic Effect of Impacts on the Ocean". Comparative Climatology of Terrestrial Planets III: From Stars to Surfaces. 2065: 2056. Bibcode:2018LPICo2065.2056Z.
  199. ^ a b c "Ask Us: Sun: Amount of Energy the Earth Gets from the Sun". Cosmicopia. NASA. Archived from the original on 16 August 2000. Retrieved 2011.
  200. ^ Lii, Jiangning. "Seismic effects of the Caloris basin impact, Mercury" (PDF). MIT.
  201. ^ "Moon Fact Sheet". NASA. Retrieved 2011.
  202. ^ Calculated: KE = 1/2 × m × v2. v = 1.023×10 m/s. m = 7.349×10 kg. KE = 1/2 × (7.349×10 kg) × (1.023×10 m/s)2 = 3.845×10J.
  203. ^ "Moment of Inertia--Earth". Eric Weisstein's World of Physics. Retrieved 2011.
  204. ^ Allain, Rhett. "Rotational energy of the Earth as an energy source". .dotphysics. Science Blogs. Archived from the original on 17 November 2011. Retrieved 2011. the Earth takes 23.9345 hours to rotate
  205. ^ Calculated: E_rotational = 1/2 × I × w2 = 1/2 × (8.0×10 kg m2) × (2×pi/(23.9345 hour period × 3600 seconds/hour))2 = 2.1×10J
  206. ^ Schaefer, Bradley E.; King, Jeremy R.; Deliyannis, Constantine P. (February 2000). "Superflares on Ordinary Solar-Type Stars". The Astrophysical Journal. 529 (2): 1026-1030. arXiv:astro-ph/9909188. Bibcode:2000ApJ...529.1026S. doi:10.1086/308325. ISSN 0004-637X. S2CID 10586370.
  207. ^ Calculated: 3.8×10J/s × 86400 s/day = 3.3×10J
  208. ^ "Earth's Gravitational Binding Energy". Retrieved 2012. Variable Density Method: the Earth's gravitational binding energy is -1.711×1032J
  209. ^ "DutchS/pseudosc/flipaxis". uwgb.edu. Archived from the original on 22 August 2017. Retrieved 2016.
  210. ^ Calculated: 3.8×10J/s × 86400 s/day × 365.25 days/year = 1.2×10J
  211. ^ "NASA - Cosmic Explosion Among the Brightest in Recorded History". www.nasa.gov. Retrieved 2022.
  212. ^ Palmer, D. M.; Barthelmy, S.; Gehrels, N.; Kippen, R. M.; Cayton, T.; Kouveliotou, C.; Eichler, D.; Wijers, R. a. M. J.; Woods, P. M.; Granot, J.; Lyubarsky, Y. E. (April 2005). "A giant ?-ray flare from the magnetar SGR 1806-20". Nature. 434 (7037): 1107-1109. arXiv:astro-ph/0503030. Bibcode:2005Natur.434.1107P. doi:10.1038/nature03525. ISSN 1476-4687. PMID 15858567. S2CID 16579885.
  213. ^ Stella, L.; Dall'Osso, S.; Israel, G. L.; Vecchio, A. (17 November 2005). "Gravitational Radiation from Newborn Magnetars in the Virgo Cluster". The Astrophysical Journal. 634 (2): L165-L168. arXiv:astro-ph/0511068. Bibcode:2005ApJ...634L.165S. doi:10.1086/498685. ISSN 0004-637X. S2CID 18172538.
  214. ^
    Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90-92, p. 51 (Dover edition)
    Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272
  215. ^ "Earth: Facts & Figures". Solar System Exploration. NASA. Archived from the original on 23 July 2012. Retrieved 2011.
  216. ^ "Conversion from kg to J". NIST. Retrieved 2011.
  217. ^ Frail, D. A.; Kulkarni, S. R.; Sari, R.; Djorgovski, S. G.; Bloom, J. S.; Galama, T. J.; Reichart, D. E.; Berger, E.; Harrison, F. A.; Price, P. A.; Yost, S. A.; Diercks, A.; Goodrich, R. W.; Chaffee, F. (2001). "Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir". The Astrophysical Journal. 562 (1): L55. arXiv:astro-ph/0102282. Bibcode:2001ApJ...562L..55F. doi:10.1086/338119. S2CID 1047372. "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 1050 erg"
  218. ^ Calculated: 5×10 erg × 1×10J/erg = 5×10J
  219. ^ Lu, Wenbin; Kumar, Pawan (28 September 2018). "On the Missing Energy Puzzle of Tidal Disruption Events". The Astrophysical Journal. 865 (2): 128. arXiv:1802.02151. doi:10.3847/1538-4357/aad54a. ISSN 1538-4357. S2CID 56015417.
  220. ^ Khokhlov, A.; Mueller, E.; Hoeflich, P.; Mueller; Hoeflich (1993). "Light curves of Type IA supernova models with different explosion mechanisms". Astronomy and Astrophysics. 270 (1-2): 223-248. Bibcode:1993A&A...270..223K.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  221. ^ Coppejans, D. L.; Margutti, R.; Terreran, G.; Nayana, A. J.; Coughlin, E. R.; Laskar, T.; Alexander, K. D.; Bietenholz, M.; Caprioli, D.; Chandra, P.; Drout, M. R. (26 May 2020). "A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy". The Astrophysical Journal. 895 (1): L23. arXiv:2003.10503. Bibcode:2020ApJ...895L..23C. doi:10.3847/2041-8213/ab8cc7. ISSN 2041-8213. S2CID 214623364.
  222. ^ Dong, S.; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.- S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; et al. (15 January 2016). "ASASSN-15lh: A highly super-luminous supernova". Science. 351 (6270): 257-260. arXiv:1507.03010. Bibcode:2016Sci...351..257D. doi:10.1126/science.aac9613. PMID 26816375. S2CID 31444274.
  223. ^ Kankare, E.; Kotak, R.; Mattila, S.; Lundqvist, P.; Ward, M. J.; Fraser, M.; Lawrence, A.; Smartt, S. J.; Meikle, W. P. S.; Bruce, A.; Harmanen, J. (December 2017). "A population of highly energetic transient events in the centres of active galaxies". Nature Astronomy. 1 (12): 865-871. arXiv:1711.04577. Bibcode:2017NatAs...1..865K. doi:10.1038/s41550-017-0290-2. ISSN 2397-3366. S2CID 119421626.
  224. ^ Both ASSASN-15lh and PS1-10adi are indicated as supernovae and probably they are; actually, other mechanisms are proposed to explain them, more or less in accordance to the characteristics of supernovae
  225. ^ Mike Wall (13 April 2020). "Boom! Distant star explosion is brightest ever seen". Space.com. Retrieved 2022.
  226. ^ Starr, Michelle. "Astronomers Detect The Most Powerful Star Explosion We've Ever Observed". ScienceAlert. Retrieved 2022.
  227. ^ Kristen Rogers. "Astronomers just discovered the brightest supernova ever seen". CNN. Retrieved 2022.
  228. ^ Nicholl, Matt; Blanchard, Peter K.; Berger, Edo; Chornock, Ryan; Margutti, Raffaella; Gomez, Sebastian; Lunnan, Ragnhild; Miller, Adam A.; Fong, Wen-fai; Terreran, Giacomo; Vigna-Gómez, Alejandro (September 2020). "An extremely energetic supernova from a very massive star in a dense medium". Nature Astronomy. 4 (9): 893-899. arXiv:2004.05840. Bibcode:2020NatAs...4..893N. doi:10.1038/s41550-020-1066-7. ISSN 2397-3366. S2CID 215744925.
  229. ^ Yong, D.; Kobayashi, C.; Da Costa, G. S.; Bessell, M. S.; Chiti, A.; Frebel, A.; Lind, K.; Mackey, A. D.; Nordlander, T.; Asplund, M.; Casey, A. R. (8 July 2021). "R-Process elements from magnetorotational hypernovae". Nature. 595 (7866): 223-226. arXiv:2107.03010. Bibcode:2021Natur.595..223Y. doi:10.1038/s41586-021-03611-2. ISSN 0028-0836. PMID 34234332. S2CID 235755170.
  230. ^ McBreen, S; Krühler, T; Rau, A; Greiner, J; Kann, D. A; Savaglio, S; Afonso, P; Clemens, C; Filgas, R; Klose, S; Küpüc Yoldas, A; Olivares E, F; Rossi, A; Szokoly, G. P; Updike, A; Yoldas, A (2010). "Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: Redshifts, afterglows, energetics and host galaxies". Astronomy and Astrophysics. 516 (71): A71. arXiv:1003.3885. Bibcode:2010A&A...516A..71M. doi:10.1051/0004-6361/200913734. S2CID 119151764.
  231. ^ Cenko, S. B; Frail, D. A; Harrison, F. A; Haislip, J. B; Reichart, D. E; Butler, N. R; Cobb, B. E; Cucchiara, A; Berger, E; Bloom, J. S; Chandra, P; Fox, D. B; Perley, D. A; Prochaska, J. X; Filippenko, A. V; Glazebrook, K; Ivarsen, K. M; Kasliwal, M. M; Kulkarni, S. R; LaCluyze, A. P; Lopez, S; Morgan, A. N; Pettini, M; Rana, V. R (2010). "Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events". The Astrophysical Journal. 732 (1): 29. arXiv:1004.2900. Bibcode:2011ApJ...732...29C. doi:10.1088/0004-637X/732/1/29. S2CID 50964480.
  232. ^ Cenko, S. B; Frail, D. A; Harrison, F. A; Kulkarni, S. R; Nakar, E; Chandra, P; Butler, N. R; Fox, D. B; Gal-Yam, A; Kasliwal, M. M; Kelemen, J; Moon, D. -S; Price, P. A; Rau, A; Soderberg, A. M; Teplitz, H. I; Werner, M. W; Bock, D. C. -J; Bloom, J. S; Starr, D. A; Filippenko, A. V; Chevalier, R. A; Gehrels, N; Nousek, J. N; Piran, T; Piran, T (2010). "The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts". The Astrophysical Journal. 711 (2): 641-654. arXiv:0905.0690. Bibcode:2010ApJ...711..641C. doi:10.1088/0004-637X/711/2/641. S2CID 32188849.
  233. ^ url= http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf Archived 1 August 2014 at the Wayback Machine
  234. ^ url= http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt
  235. ^ "A Hypernova: The Super-charged Supernova and its link to Gamma-Ray Bursts". Imagine the Universe!. NASA. Archived from the original on 19 October 2011. Retrieved 2011. With a power about 100 times that of the already astonishingly powerful "typical" supernova
  236. ^ it is specified that only the 1% of the total energy (10^44 J) is kinetic energy; so, almost the total energy is carried by neutrinos
  237. ^ Kasen, Daniel; Woosley, S. E.; Heger, Alexander (2011). "Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout". The Astrophysical Journal. 734 (2): 102. arXiv:1101.3336. Bibcode:2011ApJ...734..102K. doi:10.1088/0004-637X/734/2/102. S2CID 118508934.
  238. ^ "Quark-Nova | Astronomy & Astrophysics (A&A)".
  239. ^ Ruffini, R.; Salmonson, J. D.; Wilson, J. R.; Xue, S. -S. (1 October 1999). "On the pair electromagnetic pulse of a black hole with electromagnetic structure". Astronomy and Astrophysics. 350: 334-343. arXiv:astro-ph/9907030. Bibcode:1999A&A...350..334R. ISSN 0004-6361.
  240. ^ Ruffini, R.; Salmonson, J. D.; Wilson, J. R.; Xue, S. -S. (1 July 2000). "On the pair-electromagnetic pulse from an electromagnetic black hole surrounded by a baryonic remnant". Astronomy and Astrophysics. 359: 855-864. arXiv:astro-ph/0004257. Bibcode:2000A&A...359..855R. ISSN 0004-6361.
  241. ^ De Colle, Fabio; Lu, Wenbin (September 2020). "Jets from Tidal Disruption Events". New Astronomy Reviews. 89: 101538. arXiv:1911.01442. doi:10.1016/j.newar.2020.101538. S2CID 207870076.
  242. ^ "Sun Fact Sheet". NASA. Retrieved 2011.
  243. ^ "Conversion from kg to J". NIST. Retrieved 2011.
  244. ^ Abbott, B.; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975. S2CID 124959784.
  245. ^ If GW190521 is a boson star merging, the present one remains the largest. See note [246][247]
  246. ^ "Fermi's record breaking gamma-ray burst".
  247. ^ It is important to specify that the energetic reduction for beaming (invoked to explain so much energetics and jet breaks) is expected in the "Fireball model", which is the traditional one; other main models explain both Long and Short GRBs with binary systems, such as "Induced Gravitational Collapse", "Binary-Driven Hypernovae" which refer to the "Fireshell" one, in which cases the beaming isn't assumpted and the isotropic energy is a real value of energy due to the rotational energy of the stellar black hole and vacuum polarization in a electromagnetic field, which are able to explain energetics up and over 1047 J
  248. ^ Whalen, Daniel J.; Johnson, Jarrett L.; Smidt, Joseph; Meiksin, Avery; Heger, Alexander; Even, Wesley; Fryer, Chris L. (August 2013). "The Supernova That Destroyed a Protogalaxy: Prompt Chemical Enrichment and Supermassive Black Hole Growth". The Astrophysical Journal. 774 (1): 64. arXiv:1305.6966. Bibcode:2013ApJ...774...64W. doi:10.1088/0004-637X/774/1/64. ISSN 0004-637X. S2CID 59289675.
  249. ^ Chen, Ke-Jung; Heger, Alexander; Woosley, Stan; Almgren, Ann; Whalen, Daniel J.; Johnson, Jarrett L. (July 2014). "The General Relativistic Instability Supernova of a Supermassive Population III Star". The Astrophysical Journal. 790 (2): 162. arXiv:1402.4777. Bibcode:2014ApJ...790..162C. doi:10.1088/0004-637X/790/2/162. ISSN 0004-637X. S2CID 119269181.
  250. ^ Assuming the uncertainties about the masses of the objects, the values of the LIGO Data are taken in consideration; so we have a newborn black hole with about 142 solar masses and the conversion in gravitational waves of about 7 solar masses
  251. ^ Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K. (2 September 2020). "Properties and Astrophysical Implications of the 150 M ? Binary Black Hole Merger GW190521". The Astrophysical Journal. 900 (1): L13. arXiv:2009.01190. Bibcode:2020ApJ...900L..13A. doi:10.3847/2041-8213/aba493. ISSN 2041-8213. S2CID 221447444.
  252. ^ LIGO Scientific Collaboration and Virgo Collaboration; Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M. (2 September 2020). "GW190521: A Binary Black Hole Merger with a Total Mass of $150\text{ }\text{ }{M}_{\ensuremath{\bigodot}}$". Physical Review Letters. 125 (10): 101102. doi:10.1103/PhysRevLett.125.101102. PMID 32955328. S2CID 221447506.
  253. ^ A research claims that this is instead a boson stars merging with approximately 8 times more probability than the black hole case; if so, the existence and the collision of boson stars there would be confirmed together. Furthermore, the energy released and the distance would be reduced.[3] See the following note for the link of the research
  254. ^ Bustillo, Juan Calderón; Sanchis-Gual, Nicolas; Torres-Forné, Alejandro; Font, José A.; Vajpeyi, Avi; Smith, Rory; Herdeiro, Carlos; Radu, Eugen; Leong, Samson H. W. (24 February 2021). "GW190521 as a Merger of Proca Stars: A Potential New Vector Boson of $8.7\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}13}\text{ }\mathrm{eV}$". Physical Review Letters. 126 (8): 081101. doi:10.1103/PhysRevLett.126.081101. hdl:10773/31565. PMID 33709746. S2CID 231719224.
  255. ^ Toma, Kenji; Sakamoto, Takanori; Mészáros, Peter (April 2011). "Population III Gamma-Ray Burst Afterglows: Constraints on Stellar Masses and External Medium Densities". The Astrophysical Journal. 731 (2): 127. arXiv:1008.1269. Bibcode:2011ApJ...731..127T. doi:10.1088/0004-637X/731/2/127. ISSN 0004-637X. S2CID 119288325.
  256. ^ Garner, Rob (18 March 2020). "Quasar Tsunamis Rip Across Galaxies". NASA. Retrieved 2022.
  257. ^ To determinate this value, the maximum energy of 1047 J for gamma-ray burts is taken in consideration; then six orders of magnitude are added, equivalent to ten million of years, the time frame in which the quasar tsunami will exceed the GRBs energetics over 1 million of times, according to the Nahum Arav's statement in the previous note
  258. ^ Cavagnolo, K. W; McNamara, B. R; Wise, M. W; Nulsen, P. E. J; Brüggen, M; Gitti, M; Rafferty, D. A (2011). "A Powerful AGN Outburst in RBS 797". The Astrophysical Journal. 732 (2): 71. arXiv:1103.0630. Bibcode:2011ApJ...732...71C. doi:10.1088/0004-637X/732/2/71. S2CID 73653317.
  259. ^ url= http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html
  260. ^ Li, Shuang-Liang; Cao, Xinwu (June 2012). "CONSTRAINTS ON JET FORMATION MECHANISMS WITH THE MOST ENERGETIC GIANT OUTBURSTS IN MS 0735$\mathplus$7421". The Astrophysical Journal. 753 (1): 24. arXiv:1204.2327. doi:10.1088/0004-637X/753/1/24. ISSN 0004-637X. S2CID 119236058.
  261. ^ Giacintucci, S.; Markevitch, M.; Johnston-Hollitt, M.; Wik, D. R.; Wang, Q. H. S.; Clarke, T. E. (February 2020). "Discovery of a Giant Radio Fossil in the Ophiuchus Galaxy Cluster". The Astrophysical Journal. 891 (1): 1. arXiv:2002.01291. Bibcode:2020ApJ...891....1G. doi:10.3847/1538-4357/ab6a9d. ISSN 0004-637X. S2CID 211020555.
  262. ^ Siegel, Ethan. "Merging Supermassive Black Holes Will Become The Most Energetic Events Of All". Forbes. Retrieved 2022.
  263. ^ Siegel, Ethan (10 March 2020). "Merging Supermassive Black Holes Are The Universe's Most Energetic Events Of All". Starts With A Bang!. Retrieved 2022.
  264. ^ Diodati, Michele (11 April 2020). "Rotating Black Holes, the Most Powerful Energy Generators in the Universe". Amazing Science. Retrieved 2022.
  265. ^ Tamburini, Fabrizio; Thidé, Bo; Della Valle, Massimo (2020). "Measurement of the spin of the M87 black hole from its observed twisted light". Monthly Notices of the Royal Astronomical Society: Letters. 492: L22-L27. doi:10.1093/mnrasl/slz176. ISSN 0035-8711.
  266. ^ Tucker, W.; Blanco, P.; Rappoport, S.; David, L.; Fabricant, D.; Falco, E. E.; Forman, W.; Dressler, A.; Ramella, M. (2 March 1998). "1E 0657-56: A Contender for the Hottest Known Cluster of Galaxies". The Astrophysical Journal. 496 (1): L5. arXiv:astro-ph/9801120. Bibcode:1998ApJ...496L...5T. doi:10.1086/311234. ISSN 0004-637X. S2CID 16140198.
  267. ^ Markevitch, Maxim; Vikhlinin, Alexey (May 2007). "Shocks and cold fronts in galaxy clusters". Physics Reports. 443 (1): 1-53. arXiv:astro-ph/0701821. Bibcode:2007PhR...443....1M. doi:10.1016/j.physrep.2007.01.001. S2CID 119326224.
  268. ^ Jim Brau. "The Milky Way Galaxy". Retrieved 2011.
  269. ^ "Conversion from kg to J". NIST. Retrieved 2011.
  270. ^ Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics. 49 (1): 3-18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6. S2CID 120973010.
  271. ^ "Conversion from kg to J". NIST. Retrieved 2011.
  272. ^ Einasto, M.; et al. (December 2007). "The richest superclusters. I. Morphology". Astronomy and Astrophysics. 476 (2): 697-711. arXiv:0706.1122. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037. S2CID 15004251.
  273. ^ "Big Bang Energy". Archived from the original on 19 August 2014. Retrieved 2016.{{cite web}}: CS1 maint: bot: original URL status unknown (link)

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Orders_of_magnitude_(energy)
 



 



 
Music Scenes