Density  

Common symbols  ?, D 
SI unit  kg/m^{3} 
Extensive?  No 
Intensive?  Yes 
Conserved?  No 
Derivations from other quantities  
Dimension 
The density (more precisely, the volumetric mass density; also known as specific mass), of a substance is its mass per unit volume. The symbol most often used for density is ? (the lower case Greek letter rho), although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume:^{[1]}
where ? is the density, m is the mass, and V is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume,^{[2]} although this is scientifically inaccurate  this quantity is more specifically called specific weight.
For a pure substance the density has the same numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium and iridium are the densest known elements at standard conditions for temperature and pressure.
To simplify comparisons of density across different systems of units, it is sometimes replaced by the dimensionless quantity "relative density" or "specific gravity", i.e. the ratio of the density of the material to that of a standard material, usually water. Thus a relative density less than one relative to water means that the substance floats in water.
The density of a material varies with temperature and pressure. This variation is typically small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object and thus increases its density. Increasing the temperature of a substance (with a few exceptions) decreases its density by increasing its volume. In most materials, heating the bottom of a fluid results in convection of the heat from the bottom to the top, due to the decrease in the density of the heated fluid. This causes it to rise relative to more dense unheated material.
The reciprocal of the density of a substance is occasionally called its specific volume, a term sometimes used in thermodynamics. Density is an intensive property in that increasing the amount of a substance does not increase its density; rather it increases its mass.
In a wellknown but probably apocryphal tale, Archimedes was given the task of determining whether King Hiero's goldsmith was embezzling gold during the manufacture of a golden wreath dedicated to the gods and replacing it with another, cheaper alloy.^{[3]} Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated easily and compared with the mass; but the king did not approve of this. Baffled, Archimedes is said to have taken an immersion bath and observed from the rise of the water upon entering that he could calculate the volume of the gold wreath through the displacement of the water. Upon this discovery, he leapt from his bath and ran naked through the streets shouting, "Eureka! Eureka!" (! Greek "I have found it"). As a result, the term "eureka" entered common parlance and is used today to indicate a moment of enlightenment.
The story first appeared in written form in Vitruvius' books of architecture, two centuries after it supposedly took place.^{[4]} Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time.^{[5]}^{[6]}
A number of techniques as well as standards exist for the measurement of density of materials. Such techniques include the use of a hydrometer (a buoyancy method for liquids), Hydrostatic balance (a buoyancy method for liquids and solids), immersed body method (a buoyancy method for liquids), pycnometer (liquids and solids), air comparison pycnometer (solids), oscillating densitometer (liquids), as well as pour and tap (solids).^{[7]} However, each individual method or technique measures different types of density (e.g. bulk density, skeletal density, etc.), and therefore it is necessary to have an understanding of the type of density being measured as well as the type of material in question.
From the equation for density (? = m/V), mass density has any unit that is mass divided by volume. As there are many units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per cubic metre (kg/m^{3}) and the cgs unit of gram per cubic centimetre (g/cm^{3}) are probably the most commonly used units for density. One g/cm^{3} is equal to 1000 kg/m^{3}. One cubic centimetre (abbreviation cc) is equal to one millilitre. In industry, other larger or smaller units of mass and or volume are often more practical and US customary units may be used. See below for a list of some of the most common units of density.
The density at all points of a homogeneous object equals its total mass divided by its total volume. The mass is normally measured with a scale or balance; the volume may be measured directly (from the geometry of the object) or by the displacement of a fluid. To determine the density of a liquid or a gas, a hydrometer, a dasymeter or a Coriolis flow meter may be used, respectively. Similarly, hydrostatic weighing uses the displacement of water due to a submerged object to determine the density of the object.
If the body is not homogeneous, then its density varies between different regions of the object. In that case the density around any given location is determined by calculating the density of a small volume around that location. In the limit of an infinitesimal volume the density of an inhomogeneous object at a point becomes: , where is an elementary volume at position . The mass of the body then can be expressed as
In practice, bulk materials such as sugar, sand, or snow contain voids. Many materials exist in nature as flakes, pellets, or granules.
Voids are regions which contain something other than the considered material. Commonly the void is air, but it could also be vacuum, liquid, solid, or a different gas or gaseous mixture.
The bulk volume of a materialinclusive of the void fractionis often obtained by a simple measurement (e.g. with a calibrated measuring cup) or geometrically from known dimensions.
Mass divided by bulk volume determines bulk density. This is not the same thing as volumetric mass density.
To determine volumetric mass density, one must first discount the volume of the void fraction. Sometimes this can be determined by geometrical reasoning. For the closepacking of equal spheres the nonvoid fraction can be at most about 74%. It can also be determined empirically. Some bulk materials, however, such as sand, have a variable void fraction which depends on how the material is agitated or poured. It might be loose or compact, with more or less air space depending on handling.
In practice, the void fraction is not necessarily air, or even gaseous. In the case of sand, it could be water, which can be advantageous for measurement as the void fraction for sand saturated in wateronce any air bubbles are thoroughly driven outis potentially more consistent than dry sand measured with an air void.
In the case of noncompact materials, one must also take care in determining the mass of the material sample. If the material is under pressure (commonly ambient air pressure at the earth's surface) the determination of mass from a measured sample weight might need to account for buoyancy effects due to the density of the void constituent, depending on how the measurement was conducted. In the case of dry sand, sand is so much denser than air that the buoyancy effect is commonly neglected (less than one part in one thousand).
Mass change upon displacing one void material with another while maintaining constant volume can be used to estimate the void fraction, if the difference in density of the two voids materials is reliably known.
In general, density can be changed by changing either the pressure or the temperature. Increasing the pressure always increases the density of a material. Increasing the temperature generally decreases the density, but there are notable exceptions to this generalization. For example, the density of water increases between its melting point at 0 °C and 4 °C; similar behavior is observed in silicon at low temperatures.
The effect of pressure and temperature on the densities of liquids and solids is small. The compressibility for a typical liquid or solid is 10^{6} bar^{1} (1 bar = 0.1 MPa) and a typical thermal expansivity is 10^{5} K^{1}. This roughly translates into needing around ten thousand times atmospheric pressure to reduce the volume of a substance by one percent. (Although the pressures needed may be around a thousand times smaller for sandy soil and some clays.) A one percent expansion of volume typically requires a temperature increase on the order of thousands of degrees Celsius.
In contrast, the density of gases is strongly affected by pressure. The density of an ideal gas is
where M is the molar mass, P is the pressure, R is the universal gas constant, and T is the absolute temperature. This means that the density of an ideal gas can be doubled by doubling the pressure, or by halving the absolute temperature.
In the case of volumic thermal expansion at constant pressure and small intervals of temperature the temperature dependence of density is :
where is the density at a reference temperature, is the thermal expansion coefficient of the material at temperatures close to .
The density of a solution is the sum of mass (massic) concentrations of the components of that solution.
Mass (massic) concentration of each given component ?_{i} in a solution sums to density of the solution.
Expressed as a function of the densities of pure components of the mixture and their volume participation, it allows the determination of excess molar volumes:
provided that there is no interaction between the components.
Knowing the relation between excess volumes and activity coefficients of the components, one can determine the activity coefficients.
Material  ? (kg/m^{3})^{[note 1]}  Notes 

Hydrogen  0.0898  
Helium  0.179  
Aerographite  0.2  ^{[note 2]}^{[8]}^{[9]} 
Metallic microlattice  0.9  ^{[note 2]} 
Aerogel  1.0  ^{[note 2]} 
Air  1.2  At sea level 
Tungsten hexafluoride  12.4  One of the heaviest known gases at standard conditions 
Liquid hydrogen  70  At approx. 255 °C 
Styrofoam  75  Approx.^{[10]} 
Cork  240  Approx.^{[10]} 
Pine  373  ^{[11]} 
Lithium  535  Least dense metal 
Wood  700  Seasoned, typical^{[12]}^{[13]} 
Oak  710  ^{[11]} 
Potassium  860  ^{[14]} 
Ice  916.7  At temperature < 0 °C 
Cooking oil  910930  
Sodium  970  
Water (fresh)  1,000  At 4 °C, the temperature of its maximum density 
Water (salt)  1,030  3% 
Liquid oxygen  1,141  At approx. 219 °C 
Nylon  1,150  
Plastics  1,175  Approx.; for polypropylene and PETE/PVC 
Glycerol  1,261  ^{[15]} 
Tetrachloroethene  1,622  
Sand  1,600  Between 1,600 and 2000 ^{[16]} 
Magnesium  1,740  
Beryllium  1,850  
Concrete  2,400  ^{[17]}^{[18]} 
Glass  2,500  ^{[19]} 
Silicon  2,330  
Quartzite  2,600  ^{[16]} 
Granite  2,700  ^{[16]} 
Gneiss  2,700  ^{[16]} 
Aluminium  2,700  
Limestone  2,750  Compact^{[16]} 
Basalt  3,000  ^{[16]} 
Diiodomethane  3,325  Liquid at room temperature 
Diamond  3,500  
Titanium  4,540  
Selenium  4,800  
Vanadium  6,100  
Antimony  6,690  
Zinc  7,000  
Chromium  7,200  
Tin  7,310  
Manganese  7,325  Approx. 
Iron  7,870  
Niobium  8,570  
Brass  8,600  ^{[18]} 
Cadmium  8,650  
Cobalt  8,900  
Nickel  8,900  
Copper  8,940  
Bismuth  9,750  
Molybdenum  10,220  
Silver  10,500  
Lead  11,340  
Thorium  11,700  
Rhodium  12,410  
Mercury  13,546  
Tantalum  16,600  
Uranium  18,800  
Tungsten  19,300  
Gold  19,320  
Plutonium  19,840  
Rhenium  21,020  
Platinum  21,450  
Iridium  22,420  
Osmium  22,570  Densest element 
Notes: 
Entity  ? (kg/m^{3})  Notes 

Interstellar medium  Assuming 90% H, 10% He; variable T  
The Earth  5,515  Mean density.^{[20]} 
Earth's inner core  13,000  Approx., as listed in Earth.^{[21]} 
The core of the Sun  33,000160,000  Approx.^{[22]} 
Supermassive black hole  Equivalent density of a 4.5millionsolarmass black hole Event horizon radius is 13.5 million km.  
White dwarf star  Approx.^{[23]}  
Atomic nuclei  Does not depend strongly on size of nucleus^{[24]}  
Neutron star  
Stellarmass black hole  Equivalent density of a 4solarmass black hole Event horizon radius is 12 km. 
Temp. (°C)^{[note 1]}  Density (kg/m^{3}) 

30  983.854 
20  993.547 
10  998.117 
0  999.8395 
4  999.9720 
10  999.7026 
15  999.1026 
20  998.2071 
22  997.7735 
25  997.0479 
30  995.6502 
40  992.2 
60  983.2 
80  971.8 
100  958.4 
Notes:

T (°C)  ? (kg/m^{3}) 

25  1.423 
20  1.395 
15  1.368 
10  1.342 
5  1.316 
0  1.293 
5  1.269 
10  1.247 
15  1.225 
20  1.204 
25  1.184 
30  1.164 
35  1.146 
The SI unit for density is:
The litre and metric tons are not part of the SI, but are acceptable for use with it, leading to the following units:
Densities using the following metric units all have exactly the same numerical value, one thousandth of the value in (kg/m^{3}). Liquid water has a density of about 1 kg/dm^{3}, making any of these SI units numerically convenient to use as most solids and liquids have densities between 0.1 and 20 kg/dm^{3}.
In US customary units density can be stated in:
Imperial units differing from the above (as the Imperial gallon and bushel differ from the US units) in practice are rarely used, though found in older documents. The Imperial gallon was based on the concept that an Imperial fluid ounce of water would have a mass of one Avoirdupois ounce, and indeed 1 g/cm^{3} ? 1.00224129 ounces per Imperial fluid ounce = 10.0224129 pounds per Imperial gallon. The density of precious metals could conceivably be based on Troy ounces and pounds, a possible cause of confusion.
Knowing the volume of the unit cell of a crystalline material and its formula weight (in daltons), the density can be calculated. One dalton per cubic ångström is equal to a density of 1.660 539 066 60 g/cm^{3}.