Limit Comparison Test
Get Limit Comparison Test essential facts below. View Videos or join the Limit Comparison Test discussion. Add Limit Comparison Test to your PopFlock.com topic list for future reference or share this resource on social media.
Limit Comparison Test

In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series.

## Statement

Suppose that we have two series ${\displaystyle \Sigma _{n}a_{n}}$ and ${\displaystyle \Sigma _{n}b_{n}}$ with ${\displaystyle a_{n}\geq 0,b_{n}>0}$ for all ${\displaystyle n}$.

Then if ${\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c}$ with ${\displaystyle 0, then either both series converge or both series diverge.[1]

## Proof

Because ${\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c}$ we know that for every ${\displaystyle \varepsilon >0}$ there is a positive integer ${\displaystyle n_{0}}$ such that for all ${\displaystyle n\geq n_{0}}$ we have that ${\displaystyle \left|{\frac {a_{n}}{b_{n}}}-c\right|<\varepsilon }$, or equivalently

${\displaystyle -\varepsilon <{\frac {a_{n}}{b_{n}}}-c<\varepsilon }$
${\displaystyle c-\varepsilon <{\frac {a_{n}}{b_{n}}}
${\displaystyle (c-\varepsilon )b_{n}

As ${\displaystyle c>0}$ we can choose ${\displaystyle \varepsilon }$ to be sufficiently small such that ${\displaystyle c-\varepsilon }$ is positive. So ${\displaystyle b_{n}<{\frac {1}{c-\varepsilon }}a_{n}}$ and by the direct comparison test, if ${\displaystyle \sum _{n}a_{n}}$ converges then so does ${\displaystyle \sum _{n}b_{n}}$.

Similarly ${\displaystyle a_{n}<(c+\varepsilon )b_{n}}$, so if ${\displaystyle \sum _{n}a_{n}}$ diverges, again by the direct comparison test, so does ${\displaystyle \sum _{n}b_{n}}$.

That is, both series converge or both series diverge.

## Example

We want to determine if the series ${\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}+2n}}}$ converges. For this we compare with the convergent series ${\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}$.

As ${\displaystyle \lim _{n\to \infty }{\frac {1}{n^{2}+2n}}{\frac {n^{2}}{1}}=1>0}$ we have that the original series also converges.

## One-sided version

One can state a one-sided comparison test by using limit superior. Let ${\displaystyle a_{n},b_{n}\geq 0}$ for all ${\displaystyle n}$. Then if ${\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c}$ with ${\displaystyle 0\leq c<\infty }$ and ${\displaystyle \Sigma _{n}b_{n}}$ converges, necessarily ${\displaystyle \Sigma _{n}a_{n}}$ converges.

## Example

Let ${\displaystyle a_{n}={\frac {1-(-1)^{n}}{n^{2}}}}$ and ${\displaystyle b_{n}={\frac {1}{n^{2}}}}$ for all natural numbers ${\displaystyle n}$. Now ${\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\lim _{n\to \infty }(1-(-1)^{n})}$ does not exist, so we cannot apply the standard comparison test. However, ${\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\limsup _{n\to \infty }(1-(-1)^{n})=2\in [0,\infty )}$ and since ${\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}}$ converges, the one-sided comparison test implies that ${\displaystyle \sum _{n=1}^{\infty }{\frac {1-(-1)^{n}}{n^{2}}}}$ converges.

## Converse of the one-sided comparison test

Let ${\displaystyle a_{n},b_{n}\geq 0}$ for all ${\displaystyle n}$. If ${\displaystyle \Sigma _{n}a_{n}}$ diverges and ${\displaystyle \Sigma _{n}b_{n}}$ converges, then necessarily ${\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\infty }$, that is, ${\displaystyle \liminf _{n\to \infty }{\frac {b_{n}}{a_{n}}}=0}$. The essential content here is that in some sense the numbers ${\displaystyle a_{n}}$ are larger than the numbers ${\displaystyle b_{n}}$.

## Example

Let ${\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}}$ be analytic in the unit disc ${\displaystyle D=\{z\in \mathbb {C} :|z|<1\}}$ and have image of finite area. By Parseval's formula the area of the image of ${\displaystyle f}$ is ${\displaystyle \sum _{n=1}^{\infty }n|a_{n}|^{2}}$. Moreover, ${\displaystyle \sum _{n=1}^{\infty }1/n}$ diverges. Therefore, by the converse of the comparison test, we have ${\displaystyle \liminf _{n\to \infty }{\frac {n|a_{n}|^{2}}{1/n}}=\liminf _{n\to \infty }(n|a_{n}|)^{2}=0}$, that is, ${\displaystyle \liminf _{n\to \infty }n|a_{n}|=0}$.

## References

1. ^ Swokowski, Earl (1983), Calculus with analytic geometry (Alternate ed.), Prindle, Weber & Schmidt, p. 516, ISBN 0-87150-341-7

• Rinaldo B. Schinazi: From Calculus to Analysis. Springer, 2011, ISBN 9780817682897, pp. 50
• Michele Longo and Vincenzo Valori: The Comparison Test: Not Just for Nonnegative Series. Mathematics Magazine, Vol. 79, No. 3 (Jun., 2006), pp. 205-210 (JSTOR)
• J. Marshall Ash: The Limit Comparison Test Needs Positivity. Mathematics Magazine, Vol. 85, No. 5 (December 2012), pp. 374-375 (JSTOR)