Kaktovik Numerals
Get Kaktovik Numerals essential facts below. View Videos or join the Kaktovik Numerals discussion. Add Kaktovik Numerals to your PopFlock.com topic list for future reference or share this resource on social media.
Kaktovik Numerals

The 20 digits of the Kaktovik system

The Kaktovik numerals are a base-20 system created by Alaskan Iñupiat. They are visually iconic, with shapes that indicate the number being represented.

The Iñupiaq language has a base-20 numeral system, as do all the Eskimo–Aleut languages of Alaska and Canada. The familiar Arabic numerals, which were designed for a base-10 system, are inadequate for Iñupiaq and other Inuit languages. To remedy this problem, students in Kaktovik, Alaska, invented a base-20 numeral notation in 1994,[1] which has spread among the Alaskan Iñupiat and has been considered for use in Canada.[2]

The image here shows the Kaktovik digits 0 to 19. Larger numbers are composed of these digits in a positional notation: Twenty is written as a one and a zero (Inupiaq digit 1.svgInupiaq digit 0.svg), forty as a two and a zero (Inupiaq digit 2.svgInupiaq digit 0.svg), four hundred as a one and two zeros (Inupiaq digit 1.svgInupiaq digit 0.svgInupiaq digit 0.svg), eight hundred as a two and two zeros (Inupiaq digit 2.svgInupiaq digit 0.svgInupiaq digit 0.svg), and so on.

System

Iñupiaq, like other Inuit languages, has a base-20 counting system with a sub-base of 5. That is, quantities are counted in scores (as in French and Danish), with intermediate numerals for 5, 10, and 15. Thus 78 is identified as 'three score fifteen-three'.[3]

The Kaktovik digits graphically reflect the lexical structure of the Iñupiaq numbering system. For example, the number seven is called tallimat mal?uk in Iñupiaq ('five-two'), and the Kaktovik digit for seven is a top stroke (five) connected to two bottom strokes (two): Inupiaq digit 7.svg. Similarly, twelve and seventeen are called qulit mal?uk ('ten-two') and akimiaq mal?uk ('fifteen-two'), and the Kaktovik digits are respectively two and three top strokes (ten and fifteen) with two bottom strokes: Inupiaq digit 12.svg, Inupiaq digit 17.svg.[4]

Values

In the table are the decimal values of the Kaktovik digits up to three places to the left and to the right of the units' place.[4]

Decimal values of Kaktovik numbers
n n×20³ n×20² n×20¹ n×20? n×20?¹ n×20?² n×20?³
1 Inupiaq digit 1.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
8,000
Inupiaq digit 1.svgInupiaq digit 0.svgInupiaq digit 0.svg
400
Inupiaq digit 1.svgInupiaq digit 0.svg
20
Inupiaq digit 1.svg
1
Inupiaq digit 0.svg.Inupiaq digit 1.svg
0.05
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 1.svg
0.0025
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 1.svg
0.000,125
2 Inupiaq digit 2.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
16,000
Inupiaq digit 2.svgInupiaq digit 0.svgInupiaq digit 0.svg
800
Inupiaq digit 2.svgInupiaq digit 0.svg
40
Inupiaq digit 2.svg
2
Inupiaq digit 0.svg.Inupiaq digit 2.svg
0.1
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 2.svg
0.005
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 2.svg
0.000,25
3 Inupiaq digit 3.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
24,000
Inupiaq digit 3.svgInupiaq digit 0.svgInupiaq digit 0.svg
1,200
Inupiaq digit 3.svgInupiaq digit 0.svg
60
Inupiaq digit 3.svg
3
Inupiaq digit 0.svg.Inupiaq digit 3.svg
0.15
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 3.svg
0.0075
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 3.svg
0.000,375
4 Inupiaq digit 4.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
32,000
Inupiaq digit 4.svgInupiaq digit 0.svgInupiaq digit 0.svg
1,600
Inupiaq digit 4.svgInupiaq digit 0.svg
80
Inupiaq digit 4.svg
4
Inupiaq digit 0.svg.Inupiaq digit 4.svg
0.2
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 4.svg
0.01
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 4.svg
0.000,5
5 Inupiaq digit 5.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
40,000
Inupiaq digit 5.svgInupiaq digit 0.svgInupiaq digit 0.svg
2,000
Inupiaq digit 5.svgInupiaq digit 0.svg
100
Inupiaq digit 5.svg
5
Inupiaq digit 0.svg.Inupiaq digit 5.svg
0.25
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 5.svg
0.0125
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 5.svg
0.000,625
6 Inupiaq digit 6.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
48,000
Inupiaq digit 6.svgInupiaq digit 0.svgInupiaq digit 0.svg
2,400
Inupiaq digit 6.svgInupiaq digit 0.svg
120
Inupiaq digit 6.svg
6
Inupiaq digit 0.svg.Inupiaq digit 6.svg
0.3
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 6.svg
0.015
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 6.svg
0.000,75
7 Inupiaq digit 7.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
56,000
Inupiaq digit 7.svgInupiaq digit 0.svgInupiaq digit 0.svg
2,800
Inupiaq digit 7.svgInupiaq digit 0.svg
140
Inupiaq digit 7.svg
7
Inupiaq digit 0.svg.Inupiaq digit 7.svg
0.35
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 7.svg
0.0175
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 7.svg
0.000,875
8 Inupiaq digit 8.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
64,000
Inupiaq digit 8.svgInupiaq digit 0.svgInupiaq digit 0.svg
3,200
Inupiaq digit 8.svgInupiaq digit 0.svg
160
Inupiaq digit 8.svg
8
Inupiaq digit 0.svg.Inupiaq digit 8.svg
0.4
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 8.svg
0.02
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 8.svg
0.001
9 Inupiaq digit 9.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
72,000
Inupiaq digit 9.svgInupiaq digit 0.svgInupiaq digit 0.svg
3,600
Inupiaq digit 9.svgInupiaq digit 0.svg
180
Inupiaq digit 9.svg
9
Inupiaq digit 0.svg.Inupiaq digit 9.svg
0.45
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 9.svg
0.0225
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 9.svg
0.001,125
10 Inupiaq digit 10.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
80,000
Inupiaq digit 10.svgInupiaq digit 0.svgInupiaq digit 0.svg
4,000
Inupiaq digit 10.svgInupiaq digit 0.svg
200
Inupiaq digit 10.svg
10
Inupiaq digit 0.svg.Inupiaq digit 10.svg
0.5
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 10.svg
0.025
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 10.svg
0.001,25
11 Inupiaq digit 11.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
88,000
Inupiaq digit 11.svgInupiaq digit 0.svgInupiaq digit 0.svg
4,400
Inupiaq digit 11.svgInupiaq digit 0.svg
220
Inupiaq digit 11.svg
11
Inupiaq digit 0.svg.Inupiaq digit 11.svg
0.55
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 11.svg
0.0275
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 11.svg
0.001,375
12 Inupiaq digit 12.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
96,000
Inupiaq digit 12.svgInupiaq digit 0.svgInupiaq digit 0.svg
4,800
Inupiaq digit 12.svgInupiaq digit 0.svg
240
Inupiaq digit 12.svg
12
Inupiaq digit 0.svg.Inupiaq digit 12.svg
0.6
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 12.svg
0.03
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 12.svg
0.001,5
13 Inupiaq digit 13.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
104,000
Inupiaq digit 13.svgInupiaq digit 0.svgInupiaq digit 0.svg
5,200
Inupiaq digit 13.svgInupiaq digit 0.svg
260
Inupiaq digit 13.svg
13
Inupiaq digit 0.svg.Inupiaq digit 13.svg
0.65
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 13.svg
0.0325
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 13.svg
0.001,625
14 Inupiaq digit 14.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
112,000
Inupiaq digit 14.svgInupiaq digit 0.svgInupiaq digit 0.svg
5,600
Inupiaq digit 14.svgInupiaq digit 0.svg
280
Inupiaq digit 14.svg
14
Inupiaq digit 0.svg.Inupiaq digit 14.svg
0.7
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 14.svg
0.035
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 14.svg
0.001,75
15 Inupiaq digit 15.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
120,000
Inupiaq digit 15.svgInupiaq digit 0.svgInupiaq digit 0.svg
6,000
Inupiaq digit 15.svgInupiaq digit 0.svg
300
Inupiaq digit 15.svg
15
Inupiaq digit 0.svg.Inupiaq digit 15.svg
0.75
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 15.svg
0.0375
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 15.svg
0.001,875
16 Inupiaq digit 16.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
128,000
Inupiaq digit 16.svgInupiaq digit 0.svgInupiaq digit 0.svg
6,400
Inupiaq digit 16.svgInupiaq digit 0.svg
320
Inupiaq digit 16.svg
16
Inupiaq digit 0.svg.Inupiaq digit 16.svg
0.8
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 16.svg
0.04
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 16.svg
0.002
17 Inupiaq digit 17.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
136,000
Inupiaq digit 17.svgInupiaq digit 0.svgInupiaq digit 0.svg
6,800
Inupiaq digit 17.svgInupiaq digit 0.svg
340
Inupiaq digit 17.svg
17
Inupiaq digit 0.svg.Inupiaq digit 17.svg
0.85
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 17.svg
0.0425
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 17.svg
0.002,125
18 Inupiaq digit 18.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
144,000
Inupiaq digit 18.svgInupiaq digit 0.svgInupiaq digit 0.svg
7,200
Inupiaq digit 18.svgInupiaq digit 0.svg
360
Inupiaq digit 18.svg
18
Inupiaq digit 0.svg.Inupiaq digit 18.svg
0.9
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 18.svg
0.045
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 18.svg
0.002,25
19 Inupiaq digit 19.svg, Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 0.svg
152,000
Inupiaq digit 19.svgInupiaq digit 0.svgInupiaq digit 0.svg
7,600
Inupiaq digit 19.svgInupiaq digit 0.svg
380
Inupiaq digit 19.svg
19
Inupiaq digit 0.svg.Inupiaq digit 19.svg
0.95
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 19.svg
0.0475
Inupiaq digit 0.svg.Inupiaq digit 0.svgInupiaq digit 0.svgInupiaq digit 19.svg
0.002,375

Origin

Map of Alaska highlighting North Slope Borough, part of Iñupiaq Nunauruat

In the early 1990s, during a math enrichment activity at Harold Kaveolook school in Kaktovik, Alaska,[1] students noted that their language used a base 20 system and found that when they tried to write numbers or do arithmetic with Arabic numerals, they didn't have enough symbols to represent the Iñupiaq numbers.[5] The students first addressed this lack by creating ten extra symbols, but found these were difficult to remember. The middle school in the small town had nine students, so it was possible for the entire class to work together to create a base-20 notation. Their teacher, William Bartley, guided them.[5]

After brainstorming, the students came up with several qualities that an ideal system would have:

  1. Visual simplicity: The symbols should be "easy to remember"
  2. Iconicity: There should be a "clear relationship between the symbols and their meanings"
  3. Efficiency: It should be "easy to write" the symbols, and they should be able to be "written quickly" without lifting the pencil from the paper
  4. Distinctiveness: They should "look very different from Arabic numerals," so there would not be any confusion between notation in the two systems
  5. Aesthetics: They should be pleasing to look at[5]

In base-20 positional notation, the number twenty is written with the digit for 1 followed by the digit for 0. The Iñupiaq language does not have a word for zero, and the students decided that the Kaktovik digit 0 should look like crossed arms, meaning that nothing was being counted.[5]

When the middle-school pupils began to teach their new system to younger students in the school, the younger students tended to squeeze the numbers down to fit inside the same-sized block. In this way, they created a iconic notation with the sub-base of 5 forming the upper part of the digit, and the remainder forming the lower part. This proved visually helpful in doing arithmetic.[5]

Computation

Iñupiaq abacus designed for use with the Kaktovik numerals

Abacus

The students built base-20 abacuses in the school workshop.[1][5] These were initially intended to help the conversion from decimal to base-20 and vice versa, but the students found their design lent itself quite naturally to arithmetic in base-20. The upper section of their abacus had three beads in each column for the values of the sub-base of 5, and the lower section had four beads in each column for the remaining units.[5]

Arithmetic

Simple long division: 30,561 ÷ 61 = 501 (vigesimal 3,G81 ÷ 31 = 151). The divisor Inupiaq digit 3.svgInupiaq digit 1.svg (red) goes into the first two digits of the dividend one time (blue), for a one in the quotient (blue). It fits into the next two digits (underlined) once but rotated (red), so the next digit in the quotient is a one rotated (a five – red). The last two digits are matched once for a final one in the quotient (white).
Long division with more chunking: 46,349,226 ÷ 2,826 = 16,401 (vigesimal E9D,D16 ÷ 716 = 2,101). The divisor Inupiaq digit 7.svgInupiaq digit 1.svgInupiaq digit 6.svg goes into the first three digits of the dividend twice (traced in red and blue), for a two in the quotient (red and blue), into the next three once (green), does not fit into the next (zero in the quotient), and into the remaining white digits once.

An advantage the students discovered of their new system was that arithmetic was easier than with the Arabic numerals.[5] Adding two digits together would look like their sum. For example,

2 + 2 = 4

is

Inupiaq digit 2.svg + Inupiaq digit 2.svg = Inupiaq digit 4.svg

It was even easier for subtraction: one could simply look at the number and remove the appropriate number of strokes to get the answer.[5]

Another advantage came in doing long division. The visual aspects and the sub-base of five made long division with large dividends almost as easy as short division, as it didn't require writing in subtables for multiplying and subtracting the intermediate steps.[1] The students could keep track of the strokes of the intermediate steps with colored pencils in an elaborated system of chunking.[5]

Legacy

The Kaktovik numerals have gained wide use among Alaskan Iñupiat. They have been introduced into language-immersion programs and have helped revive base-20 counting, which had been falling into disuse among the Iñupiat due to the prevalence of the base-10 system in English-medium schools.[1][5]

When the Kaktovik middle school students who invented the system graduated to the high school in Barrow, Alaska, (now renamed Utqia?vik) in 1995, they took their invention with them. They were permitted to teach it to students at the local middle school, and the local community I?isa?vik College added an Inuit mathematics course to its catalog.[5]

In 1996, the Commission on Inuit History Language and Culture officially adopted the numerals,[5] and in 1998 the Inuit Circumpolar Council in Canada recommended the development and use of the Kaktovik numerals in that country.[2]

Significance

Scores on the California Achievement Test in mathematics for the Kaktovik middle school improved dramatically in 1997 compared to previous years. Before the introduction of the new numerals, the average score had been in the 20th percentile; after their introduction, scores rose to above the national average. It is theorized that being able to work in both base-10 and base-20 might have comparable advantages to those bilingual students have from engaging in two ways of thinking about the world.[5]

The development of an indigenous numeral system helps to demonstrate to Alaskan-native students that math is embedded in their culture and language rather than being imparted by western culture. This is a shift from a previously commonly held view that mathematics was merely a necessity to get into college. Non-native students can see a practical example of a different world view, a part of ethnomathematics.[6]

Encoding

The Kaktovik numerals are assigned a block in the Unicode Supplementary Multilingual Plane (U+1D2C0-1D2DF).[7] The were accepted by the Unicode Technical Committee in April 2021, to be published as part of Unicode 15 in 2022. They occupy U+1D2C0 KAKTOVIK NUMERAL ZERO to U+1D2D3 KAKTOVIK NUMERAL NINETEEN.

Kaktovik
Kaktovik chart.pdf

See also

  • Maya numerals, a penta-vigesimal system from another Native American culture

References

  1. ^ a b c d e Bartley, Wm. Clark (January-February 1997). "Making the Old Way Count" (PDF). Sharing Our Pathways. 2 (1): 12-13. Archived (PDF) from the original on June 25, 2013. Retrieved 2017.
  2. ^ a b Regarding Kaktovik Numerals. Resolution 89-09. Inuit Circumpolar Council. 1998. Archived February 2, 2017, at the Wayback Machine
  3. ^ MacLean (2014) Iñupiatun Uqaluit Taniktun Sivuninit / Iñupiaq to English Dictionary, p. 840 ff.
  4. ^ a b MacLean (2014) Iñupiatun Uqaluit Taniktun Sivuninit / Iñupiaq to English Dictionary, p. 832
  5. ^ a b c d e f g h i j k l m n Bartley, William Clark (2002). "Counting on tradition: Iñupiaq numbers in the school setting". In Hankes, Judith Elaine; Fast, Gerald R. (eds.). Perspectives on Indigenous People of North America. Changing the Faces of Mathematics. Reston, Virginia: National Council of Teachers of Mathematics. pp. 225-236. ISBN 978-0873535069.
  6. ^ Engblom-Bradley, Claudette (2009). "Seeing mathematics with Indian eyes". In Williams, Maria Sháa Tláa (ed.). The Alaska Native Reader: History, Culture, Politics. Duke University Press. pp. 237-245. ISBN 9780822390831. See in particular p. 244.
  7. ^ Roadmap to the SMP Unicode Inc., 2021. Retrieved March 5, 2021

External links

  • Grunewald, Edgar (December 30, 2019). "Why These Are The Best Numbers!". YouTube. Retrieved 2019. The video demonstrates how long division is easier with visually intuitive digits like the Kaktovik ones; the illustrated problems were chosen to work out easily, as the problems in a child's introduction to arithmetic would be.
  • Silva, Eduardo Marín; Miller, Kirk; Strand, Catherine (April 29, 2021). "Unicode request for Kaktovik numerals (L2/21-058R)" (PDF). Unicode Technical Committee Document Registry. Retrieved 2021.

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Kaktovik_numerals
 



 



 
Music Scenes