Get TBAF essential facts below. View Videos or join the TBAF discussion. Add TBAF to your PopFlock.com topic list for future reference or share this resource on social media.
Tetra-n-butylammonium fluoride
IUPAC name
Tetra-n-butylammonium fluoride
Other names
Tetrabutylammonium fluoride; TBAF; n-Bu4NF
3D model (JSmol)
ECHA InfoCard 100.006.417 Edit this at Wikidata
Molar mass 261.46 g/mol
Melting point 58 to 60 °C (136 to 140 °F; 331 to 333 K) (trihydrate)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
?N verify (what is checkY?N ?)
Infobox references

Tetra-n-butylammonium fluoride, commonly abbreviated to TBAF and n-Bu4NF, is a quaternary ammonium salt with the chemical formula (CH3CH2CH2CH2)4N+F-. It is commercially available as the white solid trihydrate and as a solution in tetrahydrofuran. TBAF is used as a source of fluoride ion in organic solvents.[1]

Preparation and properties

TBAF can be prepared by passing hydrofluoric acid thorugh an ion-exchange resin, followed by tetrabutylammonium bromide. Upon evaporation of the water, TBAF can be collected as an oil in quantitative yield.[1]

Preparing anhydrous samples is of interest as the basicity of fluoride increases by more than 20 pK units on passing from aqueous to aprotic solvent.[] However, heating samples of the hydrated material to 77 °C under vacuum causes decomposition to the hydrogen difluoride salt.[2] Similarly, samples dried at 40 °C under high vacuum still contain 0.1-0.3 mol% of water and some 10% of difluoride.[3] Instead, anhydrous TBAF has been prepared by the reaction of hexafluorobenzene and tetrabutylammonium cyanide. Solutions of the salt in acetonitrile and dimethyl sulfoxide are stable.[4]

Reactions and uses

Because the fluoride ion is such a strong hydrogen bond acceptor, its salts tend to be hydrated and of limited solubility in organic solvents. As a fluoride ion source, TBAF solves this problem, although the nature of the fluoride is uncertain because TBAF samples are almost always hydrated, resulting in the formation of bifluoride (HF2-) hydroxide (OH-) as well as fluoride. Many applications tolerate heterogeneous or ill-defined fluoride sources.

As a fluoride source in organic solvents, TBAF is used to remove silyl ether protecting groups. It is also used as a phase transfer catalyst and as a mild base. As a deprotecting agent, TBAF in DMSO will convert O-silylated enolates into carbonyls. With C-Si bonds, TBAF gives carbanions that can be trapped with electrophiles or undergo protonolysis.[1][5]


  1. ^ a b c Li, Hui-Yin; Sun, Haoran; DiMagno, Stephen G. (2007). "Tetrabutylammonium Fluoride". In Paquette, Leo A. (ed.). Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. doi:10.1002/9780470842898.rt015.pub2.
  2. ^ Ramesh K. Sharma; James L. Fry (1983). "Instability of anhydrous tetra-n-alkylammonium fluorides". Journal of Organic Chemistry. 48 (12): 2112-4. doi:10.1021/jo00160a041.
  3. ^ D. Phillip Cox; Jacek Terpinski; Witold Lawrynowicz (1984). "'Anhydrous' tetrabutylammonium fluoride: a mild but highly efficient source of nucleophilic fluoride ion". Journal of Organic Chemistry. 49 (17): 3216-9. doi:10.1021/jo00191a035.
  4. ^ Haoran Sun & Stephen G. DiMagno (2005). "Anhydrous Tetrabutylammonium Fluoride". Journal of the American Chemical Society. 127 (7): 2050-1. doi:10.1021/ja0440497. PMID 15713075.
  5. ^ Nina Gommermann and Paul Knochel "N,N-Dibenzyl-N-[1-cyclohexyl-3-(trimethylsilyl)-2-propynyl]-amine from Cyclohexanecarbaldehyde, Trimethylsilylacetylene and Dibenzylamine" Org. Synth. 2007, 84, 1. doi:10.15227/orgsyn.084.0001

Further reading

  • K. Hiroya; R. Jouka; M. Kameda; A. Yasuhara & T. Sakamoto (2001). "Cyclization reactions of 2-alkynylbenzyl alcohol and 2-alkynylbenzylamine derivatives promoted by tetrabutylammonium fluoride". Tetrahedron. 57 (48): 9697-710. doi:10.1016/S0040-4020(01)00991-7..

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.



Music Scenes