Step Function

Get Step Function essential facts below. View Videos or join the Step Function discussion. Add Step Function to your PopFlock.com topic list for future reference or share this resource on social media.

## Definition and first consequences

### Variations in the definition

## Examples

### Non-examples

## Properties

## See also

## References

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Step Function

This article includes a list of general references, but it remains largely unverified because it lacks sufficient corresponding inline citations. (February 2019) (Learn how and when to remove this template message) |

In mathematics, a function on the real numbers is called a **step function** (or **staircase function**) if it can be written as a finite linear combination of indicator functions of intervals. Informally speaking, a step function is a piecewise constant function having only finitely many pieces.

A function is called a **step function** if it can be written as^{[]}

- , for all real numbers

where , are real numbers, are intervals, and is the indicator function of :

In this definition, the intervals can be assumed to have the following two properties:

- The intervals are pairwise disjoint: for
- The union of the intervals is the entire real line:

Indeed, if that is not the case to start with, a different set of intervals can be picked for which these assumptions hold. For example, the step function

can be written as

Sometimes, the intervals are required to be right-open^{[1]} or allowed to be singleton ^{[2]}. The condition that the collection of intervals must be finite is often dropped, especially in school mathematics^{[3]}^{[4]}^{[5]}, though it must still be locally finite, resulting in the definition of piecewise constant functions.

- A constant function is a trivial example of a step function. Then there is only one interval,
- The sign function which is -1 for negative numbers and +1 for positive numbers, and is the simplest non-constant step function.
- The Heaviside function
*H*(*x*), which is 0 for negative numbers and 1 for positive numbers, is equivalent to the sign function, up to a shift and scale of range (). It is the mathematical concept behind some test signals, such as those used to determine the step response of a dynamical system.

- The rectangular function, the normalized boxcar function, is used to model a unit pulse.

- The integer part function is not a step function according to the definition of this article, since it has an infinite number of intervals. However, some authors
^{[6]}also define step functions with an infinite number of intervals.^{[6]}

- The sum and product of two step functions is again a step function. The product of a step function with a number is also a step function. As such, the step functions form an algebra over the real numbers.
- A step function takes only a finite number of values. If the intervals for in the above definition of the step function are disjoint and their union is the real line, then for all
- The definite integral of a step function is a piecewise linear function.
- The Lebesgue integral of a step function is where is the length of the interval and it is assumed here that all intervals have finite length. In fact, this equality (viewed as a definition) can be the first step in constructing the Lebesgue integral.
^{[7]} - A discrete random variable is sometimes defined as a random variable whose cumulative distribution function is piecewise constant.
^{[8]}In this case, it is locally a step function (globally, it may have an infinite number of steps). Usually however, any random variable with only countably many possible values is called a discrete random variable, in this case their cumulative distribution function is not necessarily locally a step function, as infinitely many intervals can accumulate in a finite region.

- Unit step function
- Crenel function
- Simple function
- Piecewise defined function
- Sigmoid function
- Step detection

**^**http://mathworld.wolfram.com/StepFunction.html**^**http://mathonline.wikidot.com/step-functions**^**https://www.mathwords.com/s/step_function.htm**^**https://study.com/academy/lesson/step-function-definition-equation-examples.html**^**https://www.varsitytutors.com/hotmath/hotmath_help/topics/step-function- ^
^{a}^{b}Bachman, Narici, Beckenstein (5 April 2002). "Example 7.2.2".*Fourier and Wavelet Analysis*. Springer, New York, 2000. ISBN 0-387-98899-8.CS1 maint: multiple names: authors list (link) **^**Weir, Alan J (10 May 1973). "3".*Lebesgue integration and measure*. Cambridge University Press, 1973. ISBN 0-521-09751-7.**^**Bertsekas, Dimitri P. (2002).*Introduction to Probability*. Tsitsiklis, John N., ?, ? ?. Belmont, Mass.: Athena Scientific. ISBN 188652940X. OCLC 51441829.

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Popular Products

Music Scenes

Popular Artists