 Single-entry Vector
Get Single-entry Vector essential facts below. View Videos or join the Single-entry Vector discussion. Add Single-entry Vector to your PopFlock.com topic list for future reference or share this resource on social media.
Single-entry Vector

In mathematics a single-entry matrix is a matrix where a single element is one and the rest of the elements are zero, e.g.,

$\mathbf {J} ^{23}=\left[{\begin{matrix}0&0&0\\0&0&1\\0&0&0\end{matrix}}\right].$ It is a specific type of a sparse matrix. The single-entry matrix can be regarded a row-selector when it is multiplied on the left side of the matrix, e.g.:

$\mathbf {J} ^{23}\mathbf {A} =\left[{\begin{matrix}0&0&0\\a_{31}&a_{32}&a_{33}\\0&0&0\end{matrix}}\right].$ Alternatively, a column-selector when multiplied on the right side:

$\mathbf {A} \mathbf {J} ^{23}=\left[{\begin{matrix}0&0&a_{12}\\0&0&a_{22}\\0&0&a_{32}\end{matrix}}\right].$ The name, single-entry matrix, is not common, but seen in a few works.

A single-entry vector is a scaled standard unit vector.