Resonant Trans-Neptunian Object
Get Resonant Trans-Neptunian Object essential facts below. View Videos or join the Resonant Trans-Neptunian Object discussion. Add Resonant Trans-Neptunian Object to your topic list for future reference or share this resource on social media.
Resonant Trans-Neptunian Object

In astronomy, a resonant trans-Neptunian object is a trans-Neptunian object (TNO) in mean-motion orbital resonance with Neptune. The orbital periods of the resonant objects are in a simple integer relations with the period of Neptune, e.g. 1:2, 2:3, etc. Resonant TNOs can be either part of the main Kuiper belt population, or the more distant scattered disc population.[1]


Distribution of trans-Neptunian objects. Objects occupying the stronger resonances are in red.

The diagram illustrates the distribution of the known trans-Neptunian objects. Resonant objects are plotted in red. Orbital resonances with Neptune are marked with vertical bars: 1:1 marks the position of Neptune's orbit and its trojans; 2:3 marks the orbit of Pluto and plutinos; and 1:2, 2:5, etc. mark a number of smaller families. The designation 2:3 or 3:2 both refer to the same resonance for TNOs. There is no ambiguity, because TNOs have, by definition, periods longer than Neptune's. The usage depends on the author and the field of research.


Detailed analytical and numerical studies of Neptune's resonances have shown that the objects must have a relatively precise range of energies.[2][3] If the object's semi-major axis is outside these narrow ranges, the orbit becomes chaotic, with widely changing orbital elements. As TNOs were discovered, more than 10% were found to be in 2:3 resonances, far from a random distribution. It is now believed that the objects have been collected from wider distances by sweeping resonances during the migration of Neptune.[4] Well before the discovery of the first TNO, it was suggested that interaction between giant planets and a massive disk of small particles would, via angular-momentum transfer, make Jupiter migrate inwards and make Saturn, Uranus, and especially Neptune migrate outwards. During this relatively short period of time, Neptune's resonances would be sweeping the space, trapping objects on initially varying heliocentric orbits into resonance.[5]

Known populations

1:1 resonance (Neptune trojans, period ~165 years)

A few objects have been discovered following orbits with semi-major axes similar to that of Neptune, near the Sun-Neptune Lagrangian points. These Neptune trojans, termed by analogy to the (Jupiter) Trojan asteroids, are in 1:1 resonance with Neptune. 28 are known as of February 2020:[6][7]

Only 4 objects are near Neptune's L5 Lagrangian point, and the identification of one of these is insecure; the others are located in Neptune's L4 region.[8][7]

In addition, is a so-called "jumping trojan", currently transitioning from librating around L4 to librating around L5, via the L3 region.[9]

2:3 resonance ("plutinos", period ~250 years)

The motions of Orcus and Pluto in a rotating frame with a period equal to Neptune's orbital period (holding Neptune stationary)
Pluto and its moons (top) compared in size, albedo and colour with Orcus and Ixion

The 2:3 resonance at 39.4 AU is by far the dominant category among the resonant objects. As of February 2020, it includes 383 confirmed and 99 possible member bodies (such as ).[6] Of these 383 confirmed plutinos, 338 have their orbits secured in simulations run by the Deep Ecliptic Survey.[7] The objects following orbits in this resonance are named plutinos after Pluto, the first such body discovered. Large, numbered plutinos include:

3:5 resonance (period ~275 years)

As of February 2020, 47 objects are confirmed to be in a 3:5 orbital resonance with Neptune. Among the numbered objects there are:[7][6]

4:7 resonance (period ~290 years)

Another population of objects is orbiting the Sun at 43.7 AU (in the midst of the classical objects). The objects are rather small (with two exceptions, H>6) and most of them follow orbits close to the ecliptic.[7] As of February 2020, 55 4:7-resonant objects have had their orbits secured by the Deep Ecliptic Survey.[6][7] Objects with well established orbits include:[7]

1:2 resonance ("twotinos", period ~330 years)

This resonance at 47.8 AU is often considered to be the outer edge of the Kuiper belt, and the objects in this resonance are sometimes referred to as twotinos. Twotinos have inclinations less than 15 degrees and generally moderate eccentricities between 0.1 and 0.3.[10] An unknown number of the 2:1 resonants likely did not originate in a planetesimal disk that was swept by the resonance during Neptune's migration, but were captured when they had already been scattered.[11]

There are far fewer objects in this resonance than plutinos. Johnston's Archive counts 99 while simulations by the Deep Ecliptic Survey has confirmed 73 as of February 2020.[6][7] Long-term orbital integration shows that the 1:2 resonance is less stable than 2:3 resonance; only 15% of the objects in 1:2 resonance were found to survive 4 Gyr as compared with 28% of the plutinos.[10] Consequently, it might be that twotinos were originally as numerous as plutinos, but their population has dropped significantly below that of plutinos since.[10]

Objects with well established orbits include (in order of the absolute magnitude):[6]

2:5 resonance (period ~410 years)

There are 57 confirmed 2:5-resonant objects as of February 2020.[7][6]

Objects with well established orbits at 55.4 AU include:

  • , dwarf candidate

1:3 resonance (period ~500 years)

Johnston's Archive counts 14 1:3-resonant objects as of February 2020.[6] A dozen of these are secure according to the Deep Ecliptic Survey:[7]

  • ?
  • ?

Other resonances

's orbit librating in a 2:9 resonance with Neptune

As of February 2020, the following higher-order resonances are confirmed for a limited number of objects:[7]

Ratio Semimajor
Count Examples
4:5 35 ~205 11 confirmed , , , , ,
3:4 36.5 ~220 30 confirmed ,
5:8 41.1 ~264 1 confirmed
7:12 43.1 ~283 1 confirmed
5:9 44.5 ~295 6 confirmed
6:11 45 ~303 4 confirmed and . is also likely.
5:11 51 ~363 1 confirmed
4:9 52 ~370 3 confirmed ,
3:7 53 ~385 10 confirmed , , , , ,
5:12 54 ~395 6 confirmed ,
3:8 57 ~440 2 confirmed
4:11 59 ~453 1 confirmed
4:13 66 ~537 1 confirmed
3:10 67 ~549 2 confirmed 225088 Gonggong
2:7 70 ~580 10 confirmed 471143 Dziewanna,
3:11 72 ~606 2 confirmed ,
1:4 76 ~660 7 confirmed ,
5:21 78 ~706 1 confirmed[12]
2:9 80 ~730 2 confirmed ,
1:5 88 ~825 2 confirmed ,
2:11 94 ~909 3 confirmed ,
1:6 99 ~1000 2 confirmed ,
1:9 129 ~1500 2 confirmed ,

As of 2007, the dwarf planet Haumea was thought to be in a 7:12 resonance (nominal orbit very likely in resonance).[13] However, as of 2019, Buie classifies Haumea as non-resonant.[14]

Coincidental versus true resonances

One of the concerns is that weak resonances may exist and would be difficult to prove due to the current lack of accuracy in the orbits of these distant objects. Many objects have orbital periods of more than 300 years and most have only been observed over a relatively short observation arc of a few years. Due to their great distance and slow movement against background stars, it may be decades before many of these distant orbits are determined well enough to confidently confirm whether a resonance is true or merely coincidental. A true resonance will smoothly oscillate while a coincidental near resonance will circulate.[] (See Toward a formal definition)

Simulations by Emel'yanenko and Kiseleva in 2007 show that is librating in a 3:7 resonance with Neptune.[15] This libration can be stable for less than 100 million to billions of years.[15]

The orbital period of 2001 XT254 around the 3:7 (2.333) resonance of Neptune.

Emel'yanenko and Kiseleva also show that appears to have less than a 1% probability of being in a 3:7 resonance with Neptune, but it does execute circulations near this resonance.[15]

The orbital period of missing the 3:7 (2.333) resonance of Neptune.

Toward a formal definition

The classes of TNO have no universally agreed precise definitions, the boundaries are often unclear and the notion of resonance is not defined precisely. The Deep Ecliptic Survey introduced formally defined dynamical classes based on long-term forward integration of orbits under the combined perturbations from all four giant planets. (see also formal definition of classical KBO)

In general, the mean-motion resonance may involve not only orbital periods of the form

where p and q are small integers, ? and ?N are respectively the mean longitudes of the object and Neptune, but can also involve the longitude of the perihelion and the longitudes of the nodes (see orbital resonance, for elementary examples)

An object is resonant if for some small integers (p,q,n,m,r,s), the argument (angle) defined below is librating (i.e. is bounded):[16]

where the are the longitudes of perihelia and the are the longitudes of the ascending nodes, for Neptune (with subscripts "N") and the resonant object (no subscripts).

The term libration denotes here periodic oscillation of the angle around some value and is opposed to circulation where the angle can take all values from 0 to 360°. For example, in the case of Pluto, the resonant angle librates around 180° with an amplitude of around 86.6° degrees, i.e. the angle changes periodically from 93.4° to 266.6°.[17]

All new plutinos discovered during the Deep Ecliptic Survey proved to be of the type

similar to Pluto's mean-motion resonance.

More generally, this 2:3 resonance is an example of the resonances p:(p+1) (for example 1:2, 2:3, 3:4) that have proved to lead to stable orbits.[4] Their resonant angle is

In this case, the importance of the resonant angle can be understood by noting that when the object is at perihelion, i.e. , then

i.e. gives a measure of the distance of the object's perihelion from Neptune.[4] The object is protected from the perturbation by keeping its perihelion far from Neptune provided librates around an angle far from 0°.

Classification methods

As the orbital elements are known with a limited precision, the uncertainties may lead to false positives (i.e. classification as resonant of an orbit which is not). A recent approach[18] considers not only the current best-fit orbit but also two additional orbits corresponding to the uncertainties of the observational data. In simple terms, the algorithm determines whether the object would be still classified as resonant if its actual orbit differed from the best fit orbit, as the result of the errors in the observations. The three orbits are numerically integrated over a period of 10 million years. If all three orbits remain resonant (i.e. the argument of the resonance is librating, see formal definition), the classification as a resonant object is considered secure.[18] If only two out of the three orbits are librating the object is classified as probably in resonance. Finally, if only one orbit passes the test, the vicinity of the resonance is noted to encourage further observations to improve the data.[18] The two extreme values of the semi-major axis used in the algorithm are determined to correspond to uncertainties of the data of at most 3 standard deviations. Such range of semi-axis values should, with a number of assumptions, reduce the probability that the actual orbit is beyond this range to less than 0.3%. The method is applicable to objects with observations spanning at least 3 oppositions.[18]


  1. ^ Hahn, Joseph M.; Malhotra, Renu (November 2005). "Neptune's Migration into a Stirred-Up Kuiper Belt: A Detailed Comparison of Simulations to Observations". The Astronomical Journal. 130 (5): 2392-2414. arXiv:astro-ph/0507319. Bibcode:2005AJ....130.2392H. doi:10.1086/452638.
  2. ^ Malhotra, Renu (January 1996). "The Phase Space Structure Near Neptune Resonances in the Kuiper Belt" (PDF). The Astronomical Journal (preprint). 111: 504. arXiv:astro-ph/9509141. Bibcode:1996AJ....111..504M. doi:10.1086/117802. hdl:2060/19970021298. Archived (PDF) from the original on 23 July 2018 – via the NASA Technical Report Server.
  3. ^ Chiang, E. I.; Jordan, A. B. (December 2002). "On the Plutinos and Twotinos of the Kuiper Belt". The Astronomical Journal. 124 (6): 3430-3444. arXiv:astro-ph/0210440. Bibcode:2002AJ....124.3430C. doi:10.1086/344605.
  4. ^ a b c Malhotra, Renu (July 1995). "The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune" (PDF). The Astronomical Journal. 110 (1): 420-429. arXiv:astro-ph/9504036. Bibcode:1995AJ....110..420M. doi:10.1086/117532. hdl:2060/19970005091 – via the Internet Archive.
  5. ^ Malhotra, Renu; Duncan, Martin J.; Levison, Harold F. (May 2000). "Dynamics of the Kuiper Belt" (PDF). In Mannings, Vincent; Boss, Alan P.; Russell, Sara S. (eds.). Protostars and Planets IV (preprint). Space Science Series. University of Arizona Press. p. 1231. arXiv:astro-ph/9901155. Bibcode:2000prpl.conf.....M. ISBN 978-0816520596. LCCN 99050922. Archived (PDF) from the original on 11 August 2017 – via the Lunar and Planetary Laboratory.
  6. ^ a b c d e f g h Johnston's Archive (27 December 2019). "List of Known Trans-Neptunian Objects (and other outer solar system objects)".
  7. ^ a b c d e f g h i j k Buie, M. W. "The Deep Ecliptic Survey Object Classifications". Retrieved 2019.
  8. ^ "List Of Neptune Trojans". Minor Planet Center. 10 July 2017. Retrieved 2017.
  9. ^ de la Fuente Marcos, C.; de la Fuente Marcos, R. (November 2012). "Four temporary Neptune co-orbitals: (148975) 2001 XA255, (310071) 2010 KR59, (316179) 2010 EN65, and 2012 GX17". Astronomy and Astrophysics. 547: 7. arXiv:1210.3466. Bibcode:2012A&A...547L...2D. doi:10.1051/0004-6361/201220377.(rotating frame)
  10. ^ a b c M. Tiscareno; R. Malhotra (April 2008). "Chaotic Diffusion of Resonant Kuiper Belt Objects". The Astronomical Journal. 194 (3): 827-837. arXiv:0807.2835. Bibcode:2009AJ....138..827T. doi:10.1088/0004-6256/138/3/827.
  11. ^ Lykawka, Patryk Sofia & Mukai, Tadashi (July 2007). "Dynamical classification of trans-neptunian objects: Probing their origin, evolution, and interrelation". Icarus. 189 (1): 213-232. Bibcode:2007Icar..189..213L. doi:10.1016/j.icarus.2007.01.001.
  12. ^ A Dwarf Planet Class Object in the 21:5 Resonance with Neptune
  13. ^ D. Ragozzine; M. E. Brown (2007-09-04). "Candidate Members and Age Estimate of the Family of Kuiper Belt Object 2003 EL61". The Astronomical Journal. 134 (6): 2160-2167. arXiv:0709.0328. Bibcode:2007AJ....134.2160R. doi:10.1086/522334.
  14. ^ Orbit Fit and Astrometric record for 136108
  15. ^ a b c Emel'yanenko, V. V; Kiseleva, E. L. (2008). "Resonant motion of trans-Neptunian objects in high-eccentricity orbits". Astronomy Letters. 34 (4): 271-279. Bibcode:2008AstL...34..271E. doi:10.1134/S1063773708040075.
  16. ^ J. L. Elliot, S. D. Kern, K. B. Clancy, A. A. S. Gulbis, R. L. Millis, M. W. Buie, L. H. Wasserman, E. I. Chiang, A. B. Jordan, D. E. Trilling, and K. J. Meech The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population. The Astronomical Journal, 129 (2006), pp. preprint Archived 2006-08-23 at the Wayback Machine
  17. ^ Mark Buie (12 November 2019), Orbit Fit and Astrometric record for 134340, archived from the original on 11 November 2019
  18. ^ a b c d B. Gladman, B. Marsden, C. VanLaerhoven (2008). "Nomenclature in the Outer Solar System". The Solar System Beyond Neptune. ISBN 9780816527557.CS1 maint: uses authors parameter (link)

Further reading

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.



Music Scenes