Get Portal:Chemistry essential facts below. View Videos or join the Portal:Chemistry discussion. Add Portal:Chemistry to your PopFlock.com topic list for future reference or share this resource on social media.


An oil painting of a chemist (by Henrika ?antel in 1932).

Chemistry is the scientific discipline involved with elements and compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances.

In the scope of its subject, chemistry occupies an intermediate position between physics and biology. It is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. For example, chemistry explains aspects of plant chemistry (botany), the formation of igneous rocks (geology), how atmospheric ozone is formed and how environmental pollutants are degraded (ecology), the properties of the soil on the moon (astrophysics), how medications work (pharmacology), and how to collect DNA evidence at a crime scene (forensics).

Chemistry addresses topics such as how atoms and molecules interact via chemical bonds to form new chemical compounds. There are four types of chemical bonds: covalent bonds, in which compounds share one or more electron(s); ionic bonds, in which a compound donates one or more electrons to another compound to produce ions (cations and anions); hydrogen bonds; and Van der Waals force bonds.

Selected article

Helium discharge tube shaped like the element's atomic symbol
Helium is a chemical element; its atomic symbol is He. It is a colorless, odorless, tasteless, non-toxic, and nearly inert monatomic that heads the noble gas series in the periodic table. Its atomic number is 2 and its boiling and melting points are the lowest among the elements. It exists only as a gas except in extreme conditions. Extreme conditions are also needed to create the small handful of helium compounds, which are all unstable at standard temperature and pressure. Its most abundant stable isotope is helium-4 and it has a rare stable isotope, helium-3. The behavior of liquid helium-4's two different states—helium I and helium II—is important to researchers studying quantum mechanics (in particular the phenomenon of superfluidity) and those looking at the effects that near absolute zero temperatures have on matter (such as superconductivity).

Helium is the second most abundant element in the known Universe and second lightest element in the periodic table. In the modern Universe almost all new helium is created as a result of the nuclear fusion of hydrogen in stars. On Earth it is created by the radioactive decay of much heavier elements (alpha particles are helium-4 nuclei produced by alpha-decay). After its creation, part of it is trapped with natural gas in concentrations up to 7% by volume. It is extracted from the natural gas by a low temperature separation process called fractional distillation.

In 1868 the French astronomer Pierre Janssen first detected helium as an unknown yellow spectral line signature in light from a solar eclipse. (The word helium comes from ancient Greek which is, surprisingly, cognate with the English sun.) Since then large reserves of helium have been found in the natural gas fields of the United States, which is by far the largest supplier of the gas. Helium is used in cryogenics, in deep-sea breathing systems, to cool superconducting magnets, in helium dating, for inflating balloons, for providing lift in airships and as a protective gas for many industrial uses (such as arc welding and growing silicon wafers). Inhaling a small volume of the gas temporarily changes the quality of one's voice.


History and Philosophy of Chemistry

Antoine Lavoisier

Many chemists have an interest in the history of chemistry. Those with philosophical interests will be interested that the philosophy of chemistry has quite recently developed along a path somewhat different from the general philosophy of science.

Other articles that might interest you are:

There is a Wikipedia Project on the History of Science.

Chemistry Resources

Info icon.png

popflock.com Resource: WikiProject Chemicals/Data is a collection of links and references that are useful for chemistry-related works. This includes free online chemical databases, publications, patents, computer programs, and various tools.

unit-conversion.info A good place to figure out what equals what.

General Chemistry Online Clear text and comprehensive coverage of general chemistry topics by Fred Senese, Dept. of Chemistry Frostburg State University

General Chemistry Demonstration at Purdue Video clips (and descriptions) of lecture demonstrations.

Chemistry Webercises Directory A large listing of chemistry resources maintained by Steven Murov, Emeritus Chemistry Professor Modesto Junior College.

MathMol MathMol (Mathematics and Molecules) is a good starting point for those interested in the field of molecular modeling.

ABC-Chemistry A directory of free full-text journals in chemistry, biochemistry and related subjects.

The Element Song A goofy little song about all of the elements.

Selected image

Faraday's lab
Credit: Harriet Moore

The laboratory of Michael Faraday (1791-1867), an influential English chemist and physicist.

Selected biography

Yuan Tseh Lee (born 1936) is a Taiwanese chemist, and the first Taiwanese-born Nobel Prize laureate. Along with John Charles Polanyi and Dudley R. Herschbach, he received the 1986 Nobel Prize in Chemistry "for their contributions to the dynamics of chemical elementary processes." Lee's particular work was on crossed molecular beams, to further its use in general reactions, a method for the study of important reactions for relatively large molecules. Since 1994, Lee has been the President of the Academia Sinica of the Republic of China.

Techniques used by chemists

Equipment used by chemists

Chemistry in society

Chemistry in industry



Periodic Table

Group 1 2 3   4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Alkali metals Alkaline earth metals Pnicto­gens Chal­co­gens Halo­gens Noble gases


Hydro­gen1H He­lium2He
2 Lith­ium3Li Beryl­lium4Be Boron5B Carbon6C Nitro­gen7N Oxy­gen8O Fluor­ine9F Neon10Ne
3 So­dium11Na Magne­sium12Mg Alumin­ium13Al Sili­con14Si Phos­phorus15P Sulfur16S Chlor­ine17Cl Argon18Ar
4 Potas­sium19K Cal­cium20Ca Scan­dium21Sc Tita­nium22Ti Vana­dium23V Chrom­ium24Cr Manga­nese25Mn Iron26Fe Cobalt27Co Nickel28Ni Copper29Cu Zinc30Zn Gallium31Ga Germa­nium32Ge Arsenic33As Sele­nium34Se Bromine35Br Kryp­ton36Kr
5 Rubid­ium37Rb Stront­ium38Sr Yttrium39Y Zirco­nium40Zr Nio­bium41Nb Molyb­denum42Mo Tech­netium43Tc​[97] Ruthe­nium44Ru Rho­dium45Rh Pallad­ium46Pd Silver47Ag Cad­mium48Cd Indium49In Tin50Sn Anti­mony51Sb Tellur­ium52Te Iodine53I Xenon54Xe
6 Cae­sium55Cs Ba­rium56Ba Lan­thanum57La 1 asterisk Haf­nium72Hf Tanta­lum73Ta Tung­sten74W Rhe­nium75Re Os­mium76Os Iridium77Ir Plat­inum78Pt Gold79Au Mer­cury80Hg Thallium81Tl Lead82Pb Bis­muth83Bi Polo­nium84Po​[209] Asta­tine85At​[210] Radon86Rn​[222]
7 Fran­cium87Fr​[223] Ra­dium88Ra​[226] Actin­ium89Ac​[227] 1 asterisk Ruther­fordium104Rf​[267] Dub­nium105Db​[268] Sea­borgium106Sg​[269] Bohr­ium107Bh​[270] Has­sium108Hs​[269] Meit­nerium109Mt​[278] Darm­stadtium110Ds​[281] Roent­genium111Rg​[282] Coper­nicium112Cn​[285] Nihon­ium113Nh​[286] Flerov­ium114Fl​[289] Moscov­ium115Mc​[290] Liver­morium116Lv​[293] Tenness­ine117Ts​[294] Oga­nesson118Og​[294]
1 asterisk Cerium58Ce Praseo­dymium59Pr Neo­dymium60Nd Prome­thium61Pm​[145] Sama­rium62Sm Europ­ium63Eu Gadolin­ium64Gd Ter­bium65Tb Dyspro­sium66Dy Hol­mium67Ho Erbium68Er Thulium69Tm Ytter­bium70Yb Lute­tium71Lu  
1 asterisk Thor­ium90Th Protac­tinium91Pa Ura­nium92U Neptu­nium93Np​[237] Pluto­nium94Pu​[244] Ameri­cium95Am​[243] Curium96Cm​[247] Berkel­ium97Bk​[247] Califor­nium98Cf​[251] Einstei­nium99Es​[252] Fer­mium100Fm​[257] Mende­levium101Md​[258] Nobel­ium102No​[259] Lawren­cium103Lr​[266]

Related portals

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Study Guides





Learning resources




  1. ^ Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265-91. doi:10.1515/pac-2015-0305.
  2. ^ IUPAC 2016, Table 2, 3 combined; uncertainty removed.

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.



Music Scenes