Ockham Algebra
Get Ockham Algebra essential facts below. View Videos or join the Ockham Algebra discussion. Add Ockham Algebra to your PopFlock.com topic list for future reference or share this resource on social media.
Ockham Algebra

In mathematics, an Ockham algebra is a bounded distributive lattice with a dual endomorphism. They were introduced by Berman (1977), and were named after William of Ockham by Urquhart (1979). Ockham algebras form a variety.

Examples of Ockham algebras include Boolean algebras, De Morgan algebras, Kleene algebras, and Stone algebras.

References

  • Berman, Joel (1977), "Distributive lattices with an additional unary operation", Aequationes Mathematicae, 16 (1): 165-171, doi:10.1007/BF01837887, ISSN 0001-9054, MR 0480238 (pdf available from GDZ)
  • Blyth, Thomas Scott (2001) [1994], "Ockham algebra", in Hazewinkel, Michiel (ed.), Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
  • Blyth, Thomas Scott; Varlet, J. C. (1994). Ockham algebras. Oxford University Press. ISBN 978-0-19-859938-8.
  • Urquhart, Alasdair (1979), "Distributive lattices with a dual homomorphic operation", Polska Akademia Nauk. Institut Filozofii i Socijologii. Studia Logica, 38 (2): 201-209, doi:10.1007/BF00370442, ISSN 0039-3215, MR 0544616

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Ockham_algebra
 



 



 
Music Scenes