 Ishimori Equation
Get Ishimori Equation essential facts below. View Videos or join the Ishimori Equation discussion. Add Ishimori Equation to your PopFlock.com topic list for future reference or share this resource on social media.
Ishimori Equation

The Ishimori equation (IE) is a partial differential equation proposed by the Japanese mathematician Ishimori (1984). Its interest is as the first example of a nonlinear spin-one field model in the plane that is integrable Sattinger, Tracy & Venakides (1991, p. 78).

## Equation

The Ishimori equation has the form

${\frac {\partial \mathbf {S} }{\partial t}}=\mathbf {S} \wedge \left({\frac {\partial ^{2}\mathbf {S} }{\partial x^{2}}}+{\frac {\partial ^{2}\mathbf {S} }{\partial y^{2}}}\right)+{\frac {\partial u}{\partial x}}{\frac {\partial \mathbf {S} }{\partial y}}+{\frac {\partial u}{\partial y}}{\frac {\partial \mathbf {S} }{\partial x}},\qquad (1a)$ ${\frac {\partial ^{2}u}{\partial x^{2}}}-\alpha ^{2}{\frac {\partial ^{2}u}{\partial y^{2}}}=-2\alpha ^{2}\mathbf {S} \cdot \left({\frac {\partial \mathbf {S} }{\partial x}}\wedge {\frac {\partial \mathbf {S} }{\partial y}}\right).\qquad (1b)$ ## Lax representation

$L_{t}=AL-LA\qquad (2)$ of the equation is given by

$L=\Sigma \partial _{x}+\alpha I\partial _{y},\qquad (3a)$ $A=-2i\Sigma \partial _{x}^{2}+(-i\Sigma _{x}-i\alpha \Sigma _{y}\Sigma +u_{y}I-\alpha ^{3}u_{x}\Sigma )\partial _{x}.\qquad (3b)$ Here

$\Sigma =\sum _{j=1}^{3}S_{j}\sigma _{j},\qquad (4)$ the $\sigma _{i}$ are the Pauli matrices and $I$ is the identity matrix.

## Reductions

IE admits an important reduction: in 1+1 dimensions it reduces to the continuous classical Heisenberg ferromagnet equation (CCHFE). The CCHFE is integrable.

## Equivalent counterpart

The equivalent counterpart of the IE is the Davey-Stewartson equation.