Hafnium Silicate
Get Hafnium Silicate essential facts below. View Videos or join the Hafnium Silicate discussion. Add Hafnium Silicate to your PopFlock.com topic list for future reference or share this resource on social media.
Hafnium Silicate
Hafnium(IV) silicate
Preferred IUPAC name
Hafnium(IV) silicate
Systematic IUPAC name
Hafnium(4+) silicate
3D model (JSmol)
Molar mass  g·mol-1
Appearance Tetragonal crystal[1]
Density 7.0 g/cm3
Melting point 2,758 °C (4,996 °F; 3,031 K) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Hafnium silicate is the hafnium(IV) salt of silicic acid with the chemical formula of HfSiO4.

Thin films of hafnium silicate and zirconium silicate grown by atomic layer deposition, chemical vapor deposition or MOCVD, can be used as a high-k dielectric as a replacement for silicon dioxide in modern semiconductor devices.[2] The addition of silicon to hafnium oxide increases the band gap, while decreasing the dielectric constant. Furthermore, it increases the crystallization temperature of amorphous films and further increases the material's thermal stability with Si at high temperatures.[3]Nitrogen is sometimes added to hafnium silicate for improving the thermal stability and electrical properties of devices.

Natural occurrence

Hafnon is the natural form of hafnium orthosilicate. Its name suggests the mineral is the Hf analogue of much more common zircon. Hafnon is the only currently known confirmed mineral of hafnium (i.e., hafnium-dominant one). Hafnon and zircon form a solid solution. Hafnon is a solely pegmatitic mineral and it occurs in largely fractionated (complex-genesis/history) pegmatites. [4]


  1. ^ a b Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 4-66. ISBN 1439855110.
  2. ^ Mitrovic, I.Z.; Buiu, O.; Hall, S.; Bungey, C.; Wagner, T.; Davey, W.; Lu, Y. (April 2007). "Electrical and structural properties of hafnium silicate thin films". Microelectronics Reliability. 47 (4-5): 645-648. doi:10.1016/j.microrel.2007.01.065.
  3. ^ J.H. Choi; et al. (2011). "Development of hafnium based high-k materials--A review". Materials Science and Engineering: R. 72 (6): 97-136. doi:10.1016/j.mser.2010.12.001.
  4. ^ https://www.mindat.org/min-1792.html

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.



Music Scenes