Euler Constant
Get Euler Constant essential facts below. View Videos or join the Euler Constant discussion. Add Euler Constant to your PopFlock.com topic list for future reference or share this resource on social media.
Euler Constant

The area of the blue region converges to the Euler-Mascheroni constant.

The Euler-Mascheroni constant (also called Euler's constant) is a mathematical constant recurring in analysis and number theory, usually denoted by the lowercase Greek letter gamma (?).

It is defined as the limiting difference between the harmonic series and the natural logarithm:

{\displaystyle {\begin{aligned}\gamma &=\lim _{n\to \infty }\left(-\ln n+\sum _{k=1}^{n}{\frac {1}{k}}\right)\\[5px]&=\int _{1}^{\infty }\left(-{\frac {1}{x}}+{\frac {1}{\lfloor x\rfloor }}\right)\,dx.\end{aligned}}}

Here, ${\displaystyle \lfloor x\rfloor }$ represents the floor function.

The numerical value of the Euler-Mascheroni constant, to 50 decimal places, is:

0.57721566490153286060651209008240243104215933593992...
 Unsolved problem in mathematics:Is Euler's constant irrational? If so, is it transcendental?(more unsolved problems in mathematics)
 Binary 0.1001001111000100011001111110001101111101... Decimal 0.5772156649015328606065120900824024310421... Hexadecimal 0.93C467E37DB0C7A4D1BE3F810152CB56A1CECC3A... Continued fraction (It is not known whether this continued fraction is finite, infinite periodic or infinite non-periodic. Shown in linear notation)Source: Sloane harvnb error: no target: CITEREFSloane (help)

## History

The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43). Euler used the notations C and O for the constant. In 1790, Italian mathematician Lorenzo Mascheroni used the notations A and a for the constant. The notation ? appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time perhaps because of the constant's connection to the gamma function.[1] For example, the German mathematician Carl Anton Bretschneider used the notation ? in 1835 (Bretschneider 1837, "? = c = " on p. 260) and Augustus De Morgan used it in a textbook published in parts from 1836 to 1842 (De Morgan 1836-1842, "?" on p. 578)

## Appearances

The Euler-Mascheroni constant appears, among other places, in the following ('*' means that this entry contains an explicit equation):

## Properties

The number ? has not been proved algebraic or transcendental. In fact, it is not even known whether ? is irrational. Using a continued fraction analysis, Papanikolaou showed in 1997 that if ? is rational, its denominator must be greater than 10244663.[2][3] The ubiquity of ? revealed by the large number of equations below makes the irrationality of ? a major open question in mathematics. Also see (Sondow 2003a).

However, some progress was made. Kurt Mahler showed in 1968 that the number ${\displaystyle {\frac {\pi }{2}}{\frac {Y_{0}(2)}{J_{0}(2)}}-\gamma }$ is transcendental (${\displaystyle J_{\alpha }(x)}$ and ${\displaystyle Y_{\alpha }(x)}$ are Bessel functions).[4][1] In 2009 Alexander Aptekarev proved that at least one of the Euler-Mascheroni constant ${\displaystyle \gamma }$ and the Euler-Gompertz constant ${\displaystyle \delta }$ is irrational.[5] This result was improved in 2012 by Tanguy Rivoal, where he proved that at least one of them is transcendental.[6][1]

In 2010 M. Ram Murti and N. Saradha considered an infinite list of numbers containing ${\displaystyle {\frac {\gamma }{4}}}$ and showed that all but at most one of them have to be transcendental.[7][8]

### Relation to gamma function

? is related to the digamma function ?, and hence the derivative of the gamma function ?, when both functions are evaluated at 1. Thus:

${\displaystyle -\gamma =\Gamma '(1)=\Psi (1).}$

This is equal to the limits:

{\displaystyle {\begin{aligned}-\gamma &=\lim _{z\to 0}\left(\Gamma (z)-{\frac {1}{z}}\right)\\&=\lim _{z\to 0}\left(\Psi (z)+{\frac {1}{z}}\right).\end{aligned}}}

Further limit results are (Krämer 2005):

{\displaystyle {\begin{aligned}\lim _{z\to 0}{\frac {1}{z}}\left({\frac {1}{\Gamma (1+z)}}-{\frac {1}{\Gamma (1-z)}}\right)&=2\gamma \\\lim _{z\to 0}{\frac {1}{z}}\left({\frac {1}{\Psi (1-z)}}-{\frac {1}{\Psi (1+z)}}\right)&={\frac {\pi ^{2}}{3\gamma ^{2}}}.\end{aligned}}}

A limit related to the beta function (expressed in terms of gamma functions) is

{\displaystyle {\begin{aligned}\gamma &=\lim _{n\to \infty }\left({\frac {\Gamma \left({\frac {1}{n}}\right)\Gamma (n+1)\,n^{1+{\frac {1}{n}}}}{\Gamma \left(2+n+{\frac {1}{n}}\right)}}-{\frac {n^{2}}{n+1}}\right)\\&=\lim \limits _{m\to \infty }\sum _{k=1}^{m}{m \choose k}{\frac {(-1)^{k}}{k}}\ln {\big (}\Gamma (k+1){\big )}.\end{aligned}}}

### Relation to the zeta function

? can also be expressed as an infinite sum whose terms involve the Riemann zeta function evaluated at positive integers:

{\displaystyle {\begin{aligned}\gamma &=\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{m}}\\&=\ln {\frac {4}{\pi }}+\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{2^{m-1}m}}.\end{aligned}}}

Other series related to the zeta function include:

{\displaystyle {\begin{aligned}\gamma &={\tfrac {3}{2}}-\ln 2-\sum _{m=2}^{\infty }(-1)^{m}\,{\frac {m-1}{m}}{\big (}\zeta (m)-1{\big )}\\&=\lim _{n\to \infty }\left({\frac {2n-1}{2n}}-\ln n+\sum _{k=2}^{n}\left({\frac {1}{k}}-{\frac {\zeta (1-k)}{n^{k}}}\right)\right)\\&=\lim _{n\to \infty }\left({\frac {2^{n}}{e^{2^{n}}}}\sum _{m=0}^{\infty }{\frac {2^{mn}}{(m+1)!}}\sum _{t=0}^{m}{\frac {1}{t+1}}-n\ln 2+O\left({\frac {1}{2^{n}\,e^{2^{n}}}}\right)\right).\end{aligned}}}

The error term in the last equation is a rapidly decreasing function of n. As a result, the formula is well-suited for efficient computation of the constant to high precision.

Other interesting limits equaling the Euler-Mascheroni constant are the antisymmetric limit (Sondow 1998):

{\displaystyle {\begin{aligned}\gamma &=\lim _{s\to 1^{+}}\sum _{n=1}^{\infty }\left({\frac {1}{n^{s}}}-{\frac {1}{s^{n}}}\right)\\&=\lim _{s\to 1}\left(\zeta (s)-{\frac {1}{s-1}}\right)\\&=\lim _{s\to 0}{\frac {\zeta (1+s)+\zeta (1-s)}{2}}\end{aligned}}}

and de la Vallée-Poussin's formula

${\displaystyle \gamma =\lim _{n\to \infty }{\frac {1}{n}}\,\sum _{k=1}^{n}\left(\left\lceil {\frac {n}{k}}\right\rceil -{\frac {n}{k}}\right)}$

where ${\displaystyle \lceil \,\rceil }$ are ceiling brackets.

Closely related to this is the rational zeta series expression. By taking separately the first few terms of the series above, one obtains an estimate for the classical series limit:

${\displaystyle \gamma =\sum _{k=1}^{n}{\frac {1}{k}}-\ln n-\sum _{m=2}^{\infty }{\frac {\zeta (m,n+1)}{m}},}$

where ?(s,k) is the Hurwitz zeta function. The sum in this equation involves the harmonic numbers, Hn. Expanding some of the terms in the Hurwitz zeta function gives:

${\displaystyle H_{n}=\ln(n)+\gamma +{\frac {1}{2n}}-{\frac {1}{12n^{2}}}+{\frac {1}{120n^{4}}}-\varepsilon ,}$

where 0 < ? < .

? can also be expressed as follows where A is the Glaisher-Kinkelin constant:

${\displaystyle \gamma =12\,\log(A)-\log(2\,\pi )+{\frac {6}{\pi ^{2}}}\,\zeta '(2)}$

? can also be expressed as follows, which can be proven by expressing the zeta function as a Laurent series:

${\displaystyle \gamma =\lim _{n\to \infty }{\biggl (}-n+\zeta {\Bigl (}{\frac {n+1}{n}}{\Bigr )}{\biggr )}}$

### Integrals

? equals the value of a number of definite integrals:

{\displaystyle {\begin{aligned}\gamma &=-\int _{0}^{\infty }e^{-x}\ln x\,dx\\&=-\int _{0}^{1}\ln \left(\ln {\frac {1}{x}}\right)dx\\&=\int _{0}^{\infty }\left({\frac {1}{e^{x}-1}}-{\frac {1}{x\cdot e^{x}}}\right)dx\\&=\int _{0}^{1}\left({\frac {1}{\ln x}}+{\frac {1}{1-x}}\right)dx\\&=\int _{0}^{\infty }\left({\frac {1}{1+x^{k}}}-e^{-x}\right){\frac {dx}{x}},\quad k>0\\&=2\int _{0}^{\infty }{\frac {e^{-x^{2}}-e^{-x}}{x}}\,dx,\\&=\int _{0}^{1}H_{x}\,dx,\end{aligned}}}

where Hx is the fractional harmonic number.

Definite integrals in which ? appears include:

{\displaystyle {\begin{aligned}\int _{0}^{\infty }e^{-x^{2}}\ln x\,dx&=-{\frac {(\gamma +2\ln 2){\sqrt {\pi }}}{4}}\\\int _{0}^{\infty }e^{-x}\ln ^{2}x\,dx&=\gamma ^{2}+{\frac {\pi ^{2}}{6}}.\end{aligned}}}

One can express ? using a special case of Hadjicostas's formula as a double integral (Sondow 2003a) and (Sondow 2005) with equivalent series:

{\displaystyle {\begin{aligned}\gamma &=\int _{0}^{1}\int _{0}^{1}{\frac {x-1}{(1-xy)\ln xy}}\,dx\,dy\\&=\sum _{n=1}^{\infty }\left({\frac {1}{n}}-\ln {\frac {n+1}{n}}\right).\end{aligned}}}

An interesting comparison by (Sondow 2005) is the double integral and alternating series

{\displaystyle {\begin{aligned}\ln {\frac {4}{\pi }}&=\int _{0}^{1}\int _{0}^{1}{\frac {x-1}{(1+xy)\ln xy}}\,dx\,dy\\&=\sum _{n=1}^{\infty }\left((-1)^{n-1}\left({\frac {1}{n}}-\ln {\frac {n+1}{n}}\right)\right).\end{aligned}}}

It shows that ln may be thought of as an "alternating Euler constant".

The two constants are also related by the pair of series (Sondow 2005a)

{\displaystyle {\begin{aligned}\gamma &=\sum _{n=1}^{\infty }{\frac {N_{1}(n)+N_{0}(n)}{2n(2n+1)}}\\\ln {\frac {4}{\pi }}&=\sum _{n=1}^{\infty }{\frac {N_{1}(n)-N_{0}(n)}{2n(2n+1)}},\end{aligned}}}

where N1(n) and N0(n) are the number of 1s and 0s, respectively, in the base 2 expansion of n.

We have also Catalan's 1875 integral (see Sondow & Zudilin 2006)

${\displaystyle \gamma =\int _{0}^{1}\left({\frac {1}{1+x}}\sum _{n=1}^{\infty }x^{2^{n}-1}\right)\,dx.}$

### Series expansions

In general,

${\displaystyle \gamma =\lim _{n\to \infty }\left({\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{3}}+\ldots +{\frac {1}{n}}-\ln(n+\alpha )\right)\equiv \lim _{n\to \infty }\gamma _{n}(\alpha )}$

for any ${\displaystyle \alpha >-n}$. However, the rate of convergence of this expansion depends significantly on ${\displaystyle \alpha }$. In particular, ${\displaystyle \gamma _{n}(1/2)}$ exhibits much more rapid convergence than the conventional expansion ${\displaystyle \gamma _{n}(0)}$ (DeTemple 1993; Havil 2003, pp. 75-78). This is because

${\displaystyle {\frac {1}{2(n+1)}}<\gamma _{n}(0)-\gamma <{\frac {1}{2n}},}$

while

${\displaystyle {\frac {1}{24(n+1)^{2}}}<\gamma _{n}(1/2)-\gamma <{\frac {1}{24n^{2}}}.}$

Even so, there exist other series expansions which converge more rapidly than this; some of these are discussed below.

Euler showed that the following infinite series approaches ?:

${\displaystyle \gamma =\sum _{k=1}^{\infty }\left({\frac {1}{k}}-\ln \left(1+{\frac {1}{k}}\right)\right).}$

The series for ? is equivalent to a series Nielsen found in 1897 (Krämer 2005, Blagouchine 2016):

${\displaystyle \gamma =1-\sum _{k=2}^{\infty }(-1)^{k}{\frac {\left\lfloor \log _{2}k\right\rfloor }{k+1}}.}$

In 1910, Vacca found the closely related series (Vacca 1910,[citation not found]Glaisher 1910, Hardy 1912, Vacca 1925,[citation not found]Kluyver 1927, Krämer 2005, Blagouchine 2016)

{\displaystyle {\begin{aligned}\gamma &=\sum _{k=2}^{\infty }(-1)^{k}{\frac {\left\lfloor \log _{2}k\right\rfloor }{k}}\\[5pt]&={\tfrac {1}{2}}-{\tfrac {1}{3}}+2\left({\tfrac {1}{4}}-{\tfrac {1}{5}}+{\tfrac {1}{6}}-{\tfrac {1}{7}}\right)+3\left({\tfrac {1}{8}}-{\tfrac {1}{9}}+{\tfrac {1}{10}}-{\tfrac {1}{11}}+\cdots -{\tfrac {1}{15}}\right)+\cdots ,\end{aligned}}}

where log2 is the logarithm to base 2 and ? ? is the floor function.

In 1926 he found a second series:

{\displaystyle {\begin{aligned}\gamma +\zeta (2)&=\sum _{k=2}^{\infty }\left({\frac {1}{\left\lfloor {\sqrt {k}}\right\rfloor ^{2}}}-{\frac {1}{k}}\right)\\[5pt]&=\sum _{k=2}^{\infty }{\frac {k-\left\lfloor {\sqrt {k}}\right\rfloor ^{2}}{k\left\lfloor {\sqrt {k}}\right\rfloor ^{2}}}\\[5pt]&={\frac {1}{2}}+{\frac {2}{3}}+{\frac {1}{2^{2}}}\sum _{k=1}^{2\cdot 2}{\frac {k}{k+2^{2}}}+{\frac {1}{3^{2}}}\sum _{k=1}^{3\cdot 2}{\frac {k}{k+3^{2}}}+\cdots \end{aligned}}}

From the Malmsten-Kummer expansion for the logarithm of the gamma function (Blagouchine 2014) we get:

${\displaystyle \gamma =\ln \pi -4\ln \left(\Gamma ({\tfrac {3}{4}})\right)+{\frac {4}{\pi }}\sum _{k=1}^{\infty }(-1)^{k+1}{\frac {\ln(2k+1)}{2k+1}}.}$

An important expansion for Euler's constant is due to Fontana and Mascheroni

${\displaystyle \gamma =\sum _{n=1}^{\infty }{\frac {|G_{n}|}{n}}={\frac {1}{2}}+{\frac {1}{24}}+{\frac {1}{72}}+{\frac {19}{2880}}+{\frac {3}{800}}+\cdots ,}$

where Gn are Gregory coefficients (Krämer 2005, Blagouchine 2016, Blagouchine 2018) This series is the special case ${\displaystyle k=1}$ of the expansions

{\displaystyle {\begin{aligned}\gamma &=H_{k-1}-\ln k+\sum _{n=1}^{\infty }{\frac {(n-1)!|G_{n}|}{k(k+1)\cdots (k+n-1)}}&&\\&=H_{k-1}-\ln k+{\frac {1}{2k}}+{\frac {1}{12k(k+1)}}+{\frac {1}{12k(k+1)(k+2)}}+{\frac {19}{120k(k+1)(k+2)(k+3)}}+\cdots &&\end{aligned}}}

convergent for ${\displaystyle k=1,2,\ldots }$

A similar series with the Cauchy numbers of the second kind Cn is (Blagouchine 2016; Alabdulmohsin 2018, pp. 147-148)

${\displaystyle \gamma =1-\sum _{n=1}^{\infty }{\frac {C_{n}}{n\,(n+1)!}}=1-{\frac {1}{4}}-{\frac {5}{72}}-{\frac {1}{32}}-{\frac {251}{14400}}-{\frac {19}{1728}}-\ldots }$

Blagouchine (2018) found an interesting generalisation of the Fontana-Mascheroni series

${\displaystyle \gamma =\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{2n}}{\Big \{}\psi _{n}(a)+\psi _{n}{\Big (}-{\frac {a}{1+a}}{\Big )}{\Big \}},\quad a>-1}$

where ?n(a) are the Bernoulli polynomials of the second kind, which are defined by the generating function

${\displaystyle {\frac {z(1+z)^{s}}{\ln(1+z)}}=\sum _{n=0}^{\infty }z^{n}\psi _{n}(s),\qquad |z|<1,}$

For any rational a this series contains rational terms only. For example, at a = 1, it becomes

${\displaystyle \gamma ={\frac {3}{4}}-{\frac {11}{96}}-{\frac {1}{72}}-{\frac {311}{46080}}-{\frac {5}{1152}}-{\frac {7291}{2322432}}-{\frac {243}{100352}}-\ldots }$

see and . Other series with the same polynomials include these examples:

${\displaystyle \gamma =-\ln(a+1)-\sum _{n=1}^{\infty }{\frac {(-1)^{n}\psi _{n}(a)}{n}},\qquad \Re (a)>-1}$

and

${\displaystyle \gamma =-{\frac {2}{1+2a}}\left\{\ln \Gamma (a+1)-{\frac {1}{2}}\ln(2\pi )+{\frac {1}{2}}+\sum _{n=1}^{\infty }{\frac {(-1)^{n}\psi _{n+1}(a)}{n}}\right\},\qquad \Re (a)>-1}$

where ?(a) is the gamma function (Blagouchine 2018).

A series related to the Akiyama-Tanigawa algorithm is

${\displaystyle \gamma =\ln(2\pi )-2-2\sum _{n=1}^{\infty }{\frac {(-1)^{n}G_{n}(2)}{n}}=\ln(2\pi )-2+{\frac {2}{3}}+{\frac {1}{24}}+{\frac {7}{540}}+{\frac {17}{2880}}+{\frac {41}{12600}}+\ldots }$

where Gn(2) are the Gregory coefficients of the second order (Blagouchine 2018).

Series of prime numbers:

${\displaystyle \gamma =\lim _{n\to \infty }\left(\ln n-\sum _{p\leq n}{\frac {\ln p}{p-1}}\right).}$

### Asymptotic expansions

? equals the following asymptotic formulas (where Hn is the nth harmonic number):

${\displaystyle \gamma \sim H_{n}-\ln n-{\frac {1}{2n}}+{\frac {1}{12n^{2}}}-{\frac {1}{120n^{4}}}+\cdots }$ (Euler)
${\displaystyle \gamma \sim H_{n}-\ln \left({n+{\frac {1}{2}}+{\frac {1}{24n}}-{\frac {1}{48n^{3}}}+\cdots }\right)}$ (Negoi)
${\displaystyle \gamma \sim H_{n}-{\frac {\ln n+\ln(n+1)}{2}}-{\frac {1}{6n(n+1)}}+{\frac {1}{30n^{2}(n+1)^{2}}}-\cdots }$ (Cesàro)

The third formula is also called the Ramanujan expansion.

Alabdulmohsin 2018, pp. 147-148 derived closed-form expressions for the sums of errors of these approximations. He showed that (Theorem A.1):

${\displaystyle \sum _{n=1}^{\infty }\log n+\gamma -H_{n}+{\frac {1}{2n}}={\frac {\log(2\pi )-1-\gamma }{2}}}$

${\displaystyle \sum _{n=1}^{\infty }\log {\sqrt {n(n+1)}}+\gamma -H_{n}={\frac {\log(2\pi )-1}{2}}-\gamma }$

${\displaystyle \sum _{n=1}^{\infty }(-1)^{n}{\Big (}\log n+\gamma -H_{n}{\Big )}={\frac {\log \pi -\gamma }{2}}}$

### Exponential

The constant e? is important in number theory. Some authors denote this quantity simply as . e? equals the following limit, where pn is the nth prime number:

${\displaystyle e^{\gamma }=\lim _{n\to \infty }{\frac {1}{\ln p_{n}}}\prod _{i=1}^{n}{\frac {p_{i}}{p_{i}-1}}.}$

This restates the third of Mertens' theorems (Weisstein n.d.). The numerical value of e? is:

1.78107241799019798523650410310717954916964521430343... .

Other infinite products relating to e? include:

{\displaystyle {\begin{aligned}{\frac {e^{1+{\frac {\gamma }{2}}}}{\sqrt {2\pi }}}&=\prod _{n=1}^{\infty }e^{-1+{\frac {1}{2n}}}\left(1+{\frac {1}{n}}\right)^{n}\\{\frac {e^{3+2\gamma }}{2\pi }}&=\prod _{n=1}^{\infty }e^{-2+{\frac {2}{n}}}\left(1+{\frac {2}{n}}\right)^{n}.\end{aligned}}}

These products result from the Barnes G-function.

${\displaystyle e^{\gamma }={\sqrt {\frac {2}{1}}}\cdot {\sqrt[{3}]{\frac {2^{2}}{1\cdot 3}}}\cdot {\sqrt[{4}]{\frac {2^{3}\cdot 4}{1\cdot 3^{3}}}}\cdot {\sqrt[{5}]{\frac {2^{4}\cdot 4^{4}}{1\cdot 3^{6}\cdot 5}}}\cdots }$

where the nth factor is the (n + 1)th root of

${\displaystyle \prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n \choose k}}.}$

This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow (Sondow 2003) using hypergeometric functions.

It also holds that[9]

${\displaystyle {\frac {e^{\frac {\pi }{2}}+e^{-{\frac {\pi }{2}}}}{\pi e^{\gamma }}}=\prod _{n=1}^{\infty }\left(e^{-{\frac {1}{n}}}\left(1+{\frac {1}{n}}+{\frac {1}{2n^{2}}}\right)\right).}$

### Continued fraction

The continued fraction expansion of ? is of the form , which has no apparent pattern. The continued fraction is known to have at least 475,006 terms,[2] and it has infinitely many terms if and only if ? is irrational.

## Generalizations

abm(x) = ?-x

Euler's generalized constants are given by

${\displaystyle \gamma _{\alpha }=\lim _{n\to \infty }\left(\sum _{k=1}^{n}{\frac {1}{k^{\alpha }}}-\int _{1}^{n}{\frac {1}{x^{\alpha }}}\,dx\right),}$

for 0 < ? < 1, with ? as the special case ? = 1 (Havil 2003, pp. 117-118). This can be further generalized to

${\displaystyle c_{f}=\lim _{n\to \infty }\left(\sum _{k=1}^{n}f(k)-\int _{1}^{n}f(x)\,dx\right)}$

for some arbitrary decreasing function f. For example,

${\displaystyle f_{n}(x)={\frac {(\ln x)^{n}}{x}}}$

gives rise to the Stieltjes constants, and

${\displaystyle f_{a}(x)=x^{-a}}$

gives

${\displaystyle \gamma _{f_{a}}={\frac {(a-1)\zeta (a)-1}{a-1}}}$

where again the limit

${\displaystyle \gamma =\lim _{a\to 1}\left(\zeta (a)-{\frac {1}{a-1}}\right)}$

appears.

A two-dimensional limit generalization is the Masser-Gramain constant.

Euler-Lehmer constants are given by summation of inverses of numbers in a common modulo class (Ram Murty & Saradha 2010):

${\displaystyle \gamma (a,q)=\lim _{x\to \infty }\left(\sum _{0

The basic properties are

{\displaystyle {\begin{aligned}\gamma (0,q)&={\frac {\gamma -\ln q}{q}},\\\sum _{a=0}^{q-1}\gamma (a,q)&=\gamma ,\\q\gamma (a,q)&=\gamma -\sum _{j=1}^{q-1}e^{-{\frac {2\pi aij}{q}}}\ln \left(1-e^{\frac {2\pi ij}{q}}\right),\end{aligned}}}

and if gcd(a,q) = d then

${\displaystyle q\gamma (a,q)={\frac {q}{d}}\gamma \left({\frac {a}{d}},{\frac {q}{d}}\right)-\ln d.}$

## Published digits

Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Mascheroni attempted to calculate the constant to 32 decimal places, but made errors in the 20th-22nd and 31st-32nd decimal places; starting from the 20th digit, he calculated ...1811209008239 when the correct value is ...0651209008240.

Published Decimal Expansions of ?
Date Decimal digits Author Sources
1734 5 Leonhard Euler
1735 15 Leonhard Euler
1781 16 Leonhard Euler
1790 32 Lorenzo Mascheroni, with 20-22 and 31-32 wrong
1809 22 Johann G. von Soldner
1811 22 Carl Friedrich Gauss
1812 40 Friedrich Bernhard Gottfried Nicolai
1857 34 Christian Fredrik Lindman
1861 41 Ludwig Oettinger
1867 49 William Shanks
1871 99 James W.L. Glaisher
1871 101 William Shanks
1877 262 J. C. Adams
1952 328 John William Wrench Jr.
1961 Helmut Fischer and Karl Zeller
1962 Donald Knuth
1962 Dura W. Sweeney
1973 William A. Beyer and Michael S. Waterman
1977 Richard P. Brent
1980 Richard P. Brent & Edwin M. McMillan
1993 Jonathan Borwein
1999 Patrick Demichel and Xavier Gourdon
March 13, 2009 Alexander J. Yee & Raymond Chan [10][11]
December 22, 2013 Alexander J. Yee [11]
March 15, 2016 Peter Trueb [11]
May 18, 2016 Ron Watkins [11]
August 23, 2017 Ron Watkins [11]
May 26, 2020 Seungmin Kim & Ian Cutress [11][12]

## Notes

1. ^ a b c Lagarias, Jeffrey C. (2013-07-19). "Euler's constant: Euler's work and modern developments". Bulletin of the American Mathematical Society. 50 (4): 527-628. arXiv:1303.1856. doi:10.1090/S0273-0979-2013-01423-X. ISSN 0273-0979. S2CID 119612431.
2. ^ a b Haible, Bruno; Papanikolaou, Thomas (1998). Buhler, Joe P. (ed.). "Fast multiprecision evaluation of series of rational numbers". Algorithmic Number Theory. Lecture Notes in Computer Science. Springer Berlin Heidelberg. 1423: 338-350. doi:10.1007/bfb0054873. ISBN 978-3-540-69113-6.
3. ^ Papanikolaou, T. (1997). Entwurf und Entwicklung einer objektorientierten Bibliothek für algorithmische Zahlentheorie (Thesis). Universität des Saarlandes.
4. ^ Mahler, Kurt; Mordell, Louis Joel (1968-06-04). "Applications of a theorem by A. B. Shidlovski". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 305 (1481): 149-173. Bibcode:1968RSPSA.305..149M. doi:10.1098/rspa.1968.0111. S2CID 123486171.
5. ^ Aptekarev, A. I. (2009-02-28). "On linear forms containing the Euler constant". arXiv:0902.1768 [math.NT].
6. ^ Rivoal, Tanguy (2012). "On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant". Michigan Mathematical Journal. 61 (2): 239-254. doi:10.1307/mmj/1339011525. ISSN 0026-2285.
7. ^ Murty, M. Ram; Saradha, N. (2010-12-01). "Euler-Lehmer constants and a conjecture of Erdös". Journal of Number Theory. 130 (12): 2671-2682. doi:10.1016/j.jnt.2010.07.004. ISSN 0022-314X.
8. ^ Murty, M. Ram; Zaytseva, Anastasia (2013-01-01). "Transcendence of Generalized Euler Constants". The American Mathematical Monthly. 120 (1): 48-54. doi:10.4169/amer.math.monthly.120.01.048. ISSN 0002-9890. S2CID 20495981.
9. ^ Choi, Junesang; Srivastava, H. M. (2010-09-01). "Integral Representations for the Euler-Mascheroni Constant ?". Integral Transforms and Special Functions. 21 (9): 675-690. doi:10.1080/10652461003593294. ISSN 1065-2469. S2CID 123698377.
10. ^ Yee, Alexander J. (March 7, 2011). "Large Computations". www.numberworld.org.
11. Yee, Alexander J. "Records Set by y-cruncher". www.numberworld.org. Retrieved 2018.
Yee, Alexander J. "y-cruncher - A Multi-Threaded Pi-Program". www.numberworld.org.
12. ^ "Euler-Mascheroni Constant". Polymath Collector.