Ensemble Average

Get Ensemble Average essential facts below. View Videos or join the Ensemble Average discussion. Add Ensemble Average to your PopFlock.com topic list for future reference or share this resource on social media.

## Canonical ensemble average

### Classical statistical mechanics

### Quantum statistical mechanics

## Ensemble average in other ensembles

### Microcanonical ensemble

### Canonical ensemble

### Grand canonical ensemble

## See also

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Ensemble Average

This article does not cite any sources. (December 2009) (Learn how and when to remove this template message) |

In statistical mechanics, the **ensemble average** is defined as the mean of a quantity that is a function of the microstate of a system, according to the distribution of the system on its micro-states in this ensemble.

Since the ensemble average is dependent on the ensemble chosen, its mathematical expression varies from ensemble to ensemble. However, the mean obtained for a given physical quantity doesn't depend on the ensemble chosen at the thermodynamic limit. The grand canonical ensemble is an example of an open system.

For a classical system in thermal equilibrium with its environment, the *ensemble average* takes the form of an integral over the phase space of the system:

- where:

- is the ensemble average of the system property A,

- is , known as thermodynamic beta,

- H is the Hamiltonian of the classical system in terms of the set of coordinates and their conjugate generalized momenta , and

- is the volume element of the classical phase space of interest.

The denominator in this expression is known as the partition function, and is denoted by the letter Z.

In quantum statistical mechanics, for a quantum system in thermal equilibrium with its environment, the weighted average takes the form of a sum over quantum energy states, rather than a continuous integral:

The generalized version of the partition function provides the complete framework for working with ensemble averages in thermodynamics, information theory, statistical mechanics and quantum mechanics.

The microcanonical ensemble represents an isolated system in which energy (E), volume (V) and the number of particles (N) are all constant.

The canonical ensemble represents a closed system which can exchange energy (E) with its surroundings (usually a heat bath), but the volume (V) and the number of particles (N) are all constant.

The grand canonical ensemble represents an open system which can exchange energy (E) as well as particles with its surroundings but the volume (V) is kept constant.

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Popular Products

Music Scenes

Popular Artists