Eikonal Approximation

Get Eikonal Approximation essential facts below. View Videos or join the Eikonal Approximation discussion. Add Eikonal Approximation to your PopFlock.com topic list for future reference or share this resource on social media.
## Informal description

## Relation to the WKB approximation

## Formal description

## See also

## References

### Notes

### Further reading

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Eikonal Approximation

In theoretical physics, the **eikonal approximation** (Greek for likeness, icon or image) is an approximative method useful in wave scattering equations which occur in optics, seismology, quantum mechanics, quantum electrodynamics, and partial wave expansion.

The main advantage that the eikonal approximation offers is that the equations reduce to a differential equation in a single variable. This reduction into a single variable is the result of the straight line approximation or the eikonal approximation which allows us to choose the straight line as a special direction.

The early steps involved in the eikonal approximation in quantum mechanics are very closely related to the WKB approximation for one-dimensional waves. The WKB method, like the eikonal approximation, reduces the equations into a differential equation in a single variable. But the difficulty with the WKB approximation is that this variable is described by the trajectory of the particle which, in general, is complicated.

Making use of WKB approximation we can write the wave function of the scattered system in terms of action *S*:

Inserting the wavefunction ? in the Schrödinger equation without the presence of a magnetic field we obtain

We write *S* as a power series in *?*

For the zero-th order:

If we consider the one-dimensional case then .

We obtain a differential equation with the boundary condition:

for , .

- [1]
*Eikonal Approximation*K. V. Shajesh Department of Physics and Astronomy, University of Oklahoma

- R.R. Dubey (1995).
*Comparison of exact solution with Eikonal approximation for elastic heavy ion scattering*(3rd ed.). NASA. - W. Qian; H. Narumi; N. Daigaku. P. Kenky?jo (1989).
*Eikonal approximation in partial wave version*(3rd ed.). Nagoya. - M. Lévy; J. Sucher (1969). "Eikonal Approximation in Quantum Field Theory".
*Phys. Rev*. Maryland, USA. Bibcode:1969PhRv..186.1656L. doi:10.1103/PhysRev.186.1656. - I. T. Todorov (1970). "Quasipotential Equation Corresponding to the Relativistic Eikonal Approximation".
*Phys. Rev. D*. New Jersey, USA. Bibcode:1971PhRvD...3.2351T. doi:10.1103/PhysRevD.3.2351. Archived from the original on 2013-02-23. - D.R. Harrington (1969). "Multiple Scattering, the Glauber Approximation, and the Off-Shell Eikonal Approximation".
*Phys. Rev*. New Jersey, USA. Bibcode:1969PhRv..184.1745H. doi:10.1103/PhysRev.184.1745.

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Popular Products

Music Scenes

Popular Artists