Algebraic Number
Get Algebraic Number essential facts below. View Videos or join the Algebraic Number discussion. Add Algebraic Number to your PopFlock.com topic list for future reference or share this resource on social media.
Algebraic Number
The square root of 2 is an algebraic number equal to the length of the hypotenuse of a right triangle with legs of length 1.

An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer coefficients. For example, the golden ratio, ${\displaystyle (1+{\sqrt {5}})/2}$, is an algebraic number, because it is a root of the polynomial x2 - x - 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number ${\displaystyle 1+i}$ is algebraic because it is a root of x4 + 4.

All integers and rational numbers are algebraic, as are all roots of integers. Real and complex numbers that are not algebraic, such as ? and e, are called transcendental numbers.

The set of complex numbers is uncountable, but the set of algebraic numbers is countable and has measure zero in the Lebesgue measure as a subset of the complex numbers. In that sense, almost all complex numbers are transcendental.

## Examples

• All rational numbers are algebraic. Any rational number, expressed as the quotient of an integer a and a (non-zero) natural number b, satisfies the above definition because x = a/b is the root of a non-zero polynomial, namely bx - a.[1]
• Quadratic irrational numbers of a quadratic polynomial ax2 + bx + c with integer coefficients a, b, and c) are algebraic numbers. If the quadratic polynomial is monic (a = 1), the roots are further qualified as quadratic integers.
• A constructible number can be constructed from a given unit length using a straightedge and compass. It includes all quadratic irrational roots, all rational numbers, and all numbers that can be formed from these using the basic arithmetic operations and the extraction of square roots. (By designating cardinal directions for 1, -1, i, and −i, complex numbers such as ${\displaystyle 3+i{\sqrt {2}}}$ are considered constructible.)
• Any expression formed from algebraic numbers using any combination of the basic arithmetic operations and extraction of nth roots gives another algebraic number.
• Polynomial roots that cannot be expressed in terms of the basic arithmetic operations and extraction of nth roots (such as the roots of x5 - x + 1). That happens with many but not all polynomials of degree 5 or higher.
• Gaussian integers, complex numbers a + bi for which both a and b are integers, are also quadratic integers.
• Values of trigonometric functions of rational multiples of ? (except when undefined): that is, the trigonometric numbers such as cos ?/7, cos 3?/7, cos 5?/7 satisfies 8x3 - 4x2 - 4x + 1 = 0. The polynomial is irreducible over the rationals and so the three cosines are conjugate algebraic numbers. Likewise, tan 3?/16, tan 7?/16, tan 11?/16, tan 15?/16 satisfy the irreducible polynomial x4 - 4x3 - 6x2 + 4x + 1 = 0, and so are conjugate algebraic integers.
• Some but not all irrational numbers are algebraic:
• The numbers ${\displaystyle {\sqrt {2}}}$ and ${\displaystyle {\frac {\sqrt[{3}]{3}}{2}}}$ are algebraic since they are roots of polynomials x2 - 2 and 8x3 - 3, respectively.
• The golden ratio ? is algebraic since it is a root of the polynomial x2 - x - 1.
• The numbers ? and e are not algebraic numbers (see the Lindemann-Weierstrass theorem).[2]

## Properties

Algebraic numbers on the complex plane colored by degree (red = 1, green = 2, blue = 3, yellow = 4)
• Given an algebraic number, there is a unique monic polynomial with rational coefficients of least degree that has the number as a root. This polynomial is called its minimal polynomial. If its minimal polynomial has degree n, then the algebraic number is said to be of degree n. For example, all rational numbers have degree 1, and an algebraic number of degree 2 is a quadratic irrational.
• The real algebraic numbers are dense in the reals.
• The set of algebraic numbers is countable (enumerable),[3][4] and therefore its Lebesgue measure as a subset of the complex numbers is 0 (essentially, the algebraic numbers take up no space in the complex numbers). That is to say, "almost all" real and complex numbers are transcendental.
• All algebraic numbers are computable and therefore definable and arithmetical.
• For real numbers a and b, the complex number a + bi is algebraic if and only if both a and b are algebraic.[5]

## Field

Algebraic numbers colored by degree (blue = 4, cyan = 3, red = 2, green = 1). The unit circle is black.

The sum, difference, product and quotient (if the denominator is nonzero) of two algebraic numbers is again algebraic, as can be demonstrated by using the resultant, and algebraic numbers thus form a field ${\displaystyle {\overline {\mathbb {Q} }}}$ (sometimes denoted by ${\displaystyle \mathbb {A} }$, but that usually denotes the adele ring). Every root of a polynomial equation whose coefficients are algebraic numbers is again algebraic. That can be rephrased by saying that the field of algebraic numbers is algebraically closed. In fact, it is the smallest algebraically-closed field containing the rationals and so it is called the algebraic closure of the rationals.

The set of real algebraic numbers itself forms a field.[6]

## Related fields

Any number that can be obtained from the integers using a finite number of additions, subtractions, multiplications, divisions, and taking (possibly complex) nth roots where n is a positive integer are algebraic. The converse, however, is not true: there are algebraic numbers that cannot be obtained in this manner. These numbers are roots of polynomials of degree 5 or higher, a result of Galois theory (see Quintic equations and the Abel-Ruffini theorem). For example, the equation:

${\displaystyle x^{5}-x-1=0}$

has a unique real root that cannot be expressed in terms of only radicals and arithmetic operations.

### Closed-form number

Algebraic numbers are all numbers that can be defined explicitly or implicitly in terms of polynomials, starting from the rational numbers. One may generalize this to "closed-form numbers", which may be defined in various ways. Most broadly, all numbers that can be defined explicitly or implicitly in terms of polynomials, exponentials, and logarithms are called "elementary numbers", and these include the algebraic numbers, plus some transcendental numbers. Most narrowly, one may consider numbers explicitly defined in terms of polynomials, exponentials, and logarithms - this does not include all algebraic numbers, but does include some simple transcendental numbers such as e or ln 2.

## Algebraic integers

Algebraic numbers colored by leading coefficient (red signifies 1 for an algebraic integer)

An algebraic integer is an algebraic number that is a root of a polynomial with integer coefficients with leading coefficient 1 (a monic polynomial). Examples of algebraic integers are ${\displaystyle 5+13{\sqrt {2}},}$ ${\displaystyle 2-6i,}$ and ${\textstyle {\frac {1}{2}}(1+i{\sqrt {3}}).}$ Therefore, the algebraic integers constitute a proper superset of the integers, as the latter are the roots of monic polynomials x - k for all k ? ${\displaystyle \mathbb {Z} }$. In this sense, algebraic integers are to algebraic numbers what integers are to rational numbers.

The sum, difference and product of algebraic integers are again algebraic integers, which means that the algebraic integers form a ring. The name algebraic integer comes from the fact that the only rational numbers that are algebraic integers are the integers, and because the algebraic integers in any number field are in many ways analogous to the integers. If K is a number field, its ring of integers is the subring of algebraic integers in K, and is frequently denoted as OK. These are the prototypical examples of Dedekind domains.

## Notes

1. ^ Some of the following examples come from Hardy and Wright 1972: 159-160 and pp. 178-179
2. ^ Also, Liouville's theorem can be used to "produce as many examples of transcendental numbers as we please," cf. Hardy and Wright p. 161ff
3. ^ Hardy and Wright 1972:160 / 2008:205
4. ^ Niven 1956, Theorem 7.5.
5. ^ Niven 1956, Corollary 7.3.
6. ^ Niven (1956) p. 92.

## References

• Artin, Michael (1991), Algebra, Prentice Hall, ISBN 0-13-004763-5, MR 1129886
• Hardy, G. H. and Wright, E. M. 1978, 2000 (with general index) An Introduction to the Theory of Numbers: 5th Edition, Clarendon Press, Oxford UK, ISBN 0-19-853171-0
• Ireland, Kenneth; Rosen, Michael (1990), A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84 (Second ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4757-2103-4, ISBN 0-387-97329-X, MR 1070716
• Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556
• Niven, Ivan 1956. Irrational Numbers, Carus Mathematical Monograph no. 11, Mathematical Association of America.
• Ore, Øystein 1948, 1988, Number Theory and Its History, Dover Publications, Inc. New York, ISBN 0-486-65620-9 (pbk.)