5-simplex
Get 5-simplex essential facts below. View Videos or join the 5-simplex discussion. Add 5-simplex to your PopFlock.com topic list for future reference or share this resource on social media.
5-simplex
5-simplex
Hexateron (hix)
Type uniform 5-polytope
Schläfli symbol {34}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4-faces 6 6 {3,3,3}4-simplex t0.svg
Cells 15 15 {3,3}3-simplex t0.svg
Faces 20 20 {3}2-simplex t0.svg
Edges 15
Vertices 6
Vertex figure 5-simplex verf.png
5-cell
Coxeter group A5, [34], order 720
Dual self-dual
Base point (0,0,0,0,0,1)
Circumradius 0.645497
Properties convex, isogonal regular, self-dual

In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos-1(), or approximately 78.46°.

The 5-simplex is a solution to the problem: Make 20 equilateral triangles using 15 matchsticks, where each side of every triangle is exactly one matchstick.

Alternate names

It can also be called a hexateron, or hexa-5-tope, as a 6-facetted polytope in 5-dimensions. The name hexateron is derived from hexa- for having six facets and teron (with ter- being a corruption of tetra-) for having four-dimensional facets.

By Jonathan Bowers, a hexateron is given the acronym hix.[1]

As a configuration

This configuration matrix represents the 5-simplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation.[2][3]

Regular hexateron cartesian coordinates

The hexateron can be constructed from a 5-cell by adding a 6th vertex such that it is equidistant from all the other vertices of the 5-cell.

The Cartesian coordinates for the vertices of an origin-centered regular hexateron having edge length 2 are:

The vertices of the 5-simplex can be more simply positioned on a hyperplane in 6-space as permutations of (0,0,0,0,0,1) or (0,1,1,1,1,1). These construction can be seen as facets of the 6-orthoplex or rectified 6-cube respectively.

Projected images

Hexateron.png
Stereographic projection 4D to 3D of Schlegel diagram 5D to 4D of hexateron.

Lower symmetry forms

A lower symmetry form is a 5-cell pyramid ( )v{3,3,3}, with [3,3,3] symmetry order 120, constructed as a 5-cell base in a 4-space hyperplane, and an apex point above the hyperplane. The five sides of the pyramid are made of 5-cell cells. These are seen as vertex figures of truncated regular 6-polytopes, like a truncated 6-cube.

Another form is { }v{3,3}, with [2,3,3] symmetry order 48, the joining of an orthogonal digon and a tetrahedron, orthogonally offset, with all pairs of vertices connected between. Another form is {3}v{3}, with [3,2,3] symmetry order 36, and extended symmetry [[3,2,3]], order 72. It represents joining of 2 orthogonal triangles, orthogonally offset, with all pairs of vertices connected between.

These are seen in the vertex figures of bitruncated and tritruncated regular 6-polytopes, like a bitruncated 6-cube and a tritruncated 6-simplex. The edge labels here represent the types of face along that direction, and thus represent different edge lengths.

Compound

The compound of two 5-simplexes in dual configurations can be seen in this A6 Coxeter plane projection, with a red and blue 5-simplex vertices and edges. This compound has [[3,3,3,3]] symmetry, order 1440. The intersection of these two 5-simplexes is a uniform birectified 5-simplex. CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png = CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.png ? CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01l.png.

Compound two 5-simplexes.png

Related uniform 5-polytopes

It is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron.

13k dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 =E7+ =E7++
Coxeter
diagram
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry [3-1,3,1] [30,3,1] [31,3,1] [32,3,1] [[33,3,1]] [34,3,1]
Order 48 720 23,040 2,903,040
Graph 5-simplex t0.svg Demihexeract ortho petrie.svg Up2 1 32 t0 E7.svg - -
Name 13,-1 130 131 132 133 134

It is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral dihedron.

3k1 dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 =E7+ =E7++
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry [3-1,3,1] [30,3,1] [[31,3,1]]
= [4,3,3,3,3]
[32,3,1] [33,3,1] [34,3,1]
Order 48 720 46,080 2,903,040
Graph 5-simplex t0.svg 6-cube t5.svg Up2 3 21 t0 E7.svg - -
Name 31,-1 310 311 321 331 341

The 5-simplex, as 220 polytope is first in dimensional series 22k.

22k figures of n dimensions
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8
Coxeter
group
A2A2 A5 E6 =E6+ E6++
Coxeter
diagram
CDel nodes 10r.pngCDel 3ab.pngCDel nodes.png CDel nodes 10r.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png CDel nodes 10r.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png CDel nodes 10r.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel nodes 10r.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Graph 5-simplex t0.svg Up 2 21 t0 E6.svg
Name 22,-1 220 221 222 223

The regular 5-simplex is one of 19 uniform polytera based on the [3,3,3,3] Coxeter group, all shown here in A5Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)

Notes

  1. ^ Klitzing, Richard. "5D uniform polytopes (polytera) x3o3o3o3o -- hix".
  2. ^ Coxeter 1973, §1.8 Configurations
  3. ^ Coxeter, H.S.M. (1991). Regular Complex Polytopes (2nd ed.). Cambridge University Press. p. 117. ISBN 9780521394901.

References

External links

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron Octahedron o Cube Demicube Dodecahedron o Icosahedron
Uniform 4-polytope 5-cell 16-cell o Tesseract Demitesseract 24-cell 120-cell o 600-cell
Uniform 5-polytope 5-simplex 5-orthoplex o 5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex o 6-cube 6-demicube 122 o 221
Uniform 7-polytope 7-simplex 7-orthoplex o 7-cube 7-demicube 132 o 231 o 321
Uniform 8-polytope 8-simplex 8-orthoplex o 8-cube 8-demicube 142 o 241 o 421
Uniform 9-polytope 9-simplex 9-orthoplex o 9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex o 10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplex o n-cube n-demicube 1k2 o 2k1 o k21 n-pentagonal polytope
Topics: Polytope families o Regular polytope o List of regular polytopes and compounds

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

5-simplex
 



 



 
Music Scenes